ляет 0,6-2,0%, что окупается за счет снижения затрат кормов на единицу прироста.

Заключение. Проведенными исследованиями установлено, что добавка в комбикорма цыплят-бройлеров ферментных препаратов («Ронозим VP», «Ронозим WX», «Роксазим G-2») способствует повышению живой массы молодняка на 4,4-6,1%, снижению затрат кормов на единицу прироста на 2,1-4,1%. Экономический эффект составил 275-320 тыс. руб. на 1000 голов выращенного молодняка.

ЛИТЕРАТУРА

- 1. Фисинин В.И. Роль и задачи науки в развитии общественного птицеводства /В.И.Фисинин // Зоотехния. 1996. №3. С. 2-7.
- 2. Почебут О.Н. Новая ферментная добавка в питании цыплят-бройлеров / О.Н. Почебут // Агроэкономика. -2001. -№6. -C. 14-16.
- 3. Почебут О.Н., Василюк Я.В., Дадашко В.В. Сравнительная эффективность ферментных препаратов в питании бройлеров / О.Н. Почебут, Я.В. Василюк, В.В. Дадашко // Известия Академии аграрных наук Республики Беларусь. − 2001. − №2. − С. 22-23.
- 4. Василюк Я.В., Почебут О.Н., Медведский Н.С., Тарас А.М. Влияние ферментных препаратов на естественную резистентность цыплят-бройлеров Я.В.Василюк и др. // Тезисы докладов X съезда белорусского общества физиологов. Мн. 2001. С. 22-23.

УДК 636.2.612.64.089.67

НЕКОТОРЫЕ АСПЕКТЫ ЭФФЕКТИВНОСТИ ПОЛУЧЕНИЯ ЭМБРИОНОВ КРУПНОГО РОГАТОГО СКОТА В СИСТЕМЕ IN VITRO

Л.В. Голубец, М.П. Старовойтова, А.Е. Отрощенко, А.С. Дешко, Е.К. Степкевич

УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

Аннотация. По итогам исследований установлено, что средняя длина яичников составила $33,1\pm4,1$ с колебанием от 21,3 до 43,1 мм; ишрина — $19,2\pm1,32$ и объем яичника в среднем — $6,8\pm0,62$ (\lim — 3,5-12,1). На один яичник было получено $11,5\pm0,93$ ооцита, в том числе $5,9\pm0,57$ пригодных для постановки на дозревание (51,3%). Наиболее эффективным оказалось использование яичников объемом свыше 6,0 см 3 . При использовании доноров первой и второй лактации выход качественных клеток превышал их выход у доноров 3 и 4 лактации на 12,4 и 15,7; 13,4 и 16,7% при P<0,01. Уровень дробления колебался от 39,2 до 49,7%, а выход бластоцист от 6,2 до 10,3%. Заболевания репродуктивных органов отрицательно сказываются на 30ровье животных. Так, уровень дробящихся зародышей сокращается на 15,4 и 10,7%, а выход бластоцист (по отношению к дробящимся зародышам) на 13,8%.

Summary. Following the results of researches it is established that the average length ovaries has made 33.1 ± 4.1 with fluctuation from 21.3 to 43.1 mm; width -19.2 ± 1.32 and volume ovary on the average -6.8 ± 0.62 (lim -3.5-12.1). On one ovary it has been received 11.5 ± 0.93 oocytes, including 5.9 ± 0.57 suitable for statement on ripening (51.3%). Use ovaries in volume over 6.0 sm3 has appeared the most effective. At use to-habit the first and second lactation the exit of qualitative cages exceeded their exit at donors of 3 and 4 lactations on 12.4 and 15.7; 13.4 and 16.7% at P < 0.01. Crushing level hesitated from 39.2 to 49.7%, and an exit blastocysts from 6.2 to 10.3%. Diseases of reproductive bodies negatively affect on health of animals. So, level of split up germs is reduced to 15.4 and 10.7%, and an exit blastocysts (in relation to split up germs) on 13.8%.

Введение. С разработкой технологии искусственного осеменения роль быков-производителей в совершенствовании стада резко возросла. Потомство, полученное от них, может достигать десятков тысяч голов.

В то же время роль маток осталась на прежнем уровне, т.е. за всю продуктивную жизнь она может произвести от 3 до 6 телят. С внедрением современных технологий, когда на комплексах содержится до тысячи голов коров одновременно, круглогодовое стойловое содержание — этот срок уменьшается на порядок до 2-3 лактаций [6].

Между тем биологические возможности коров достаточно велики. Так, у новорожденных телочек в яичниках насчитывают свыше 70 тысяч потенциальных яйцеклеток, а у половозрелых коров этот показатель по некоторым данным может превышать 700 тыс. В связи с чем исследования многих ученых еще с конца 19 века были направлены на решение проблемы максимального использования этого огромного репродуктивного потенциала [1, 4, 10].

В настоящее время благодаря последним достижениям в области биологии размножения открылись новые возможности интенсификации процессов воспроизведения высокоценных генотипов сельскохозяйственных животных. Было установлено, что ооциты, извлеченные из фолликулов, при создании соответствующих условий способны возобновлять мейоз и созревать до стадии оплодотворения (М-II). Оплодотворение созревших вне организма яйцеклеток позволяет получать эмбрионы на разных стадиях развития, а их пересадка реципиентам — возможность получать племенной молодняк [2].

Выполняя ту же самую роль, что и трансплантация эмбрионов (максимально использовать репродуктивный и генетический потенциал), технология получения эмбрионов к культуре in vitro имеет целый ряд преимуществ:

- 1. Не требует гормональной обработки (гормонального вмешательства в половой цикл животного) и не удлиняет сервис-период.
- 2. Отпадает необходимость в такой трудоемкой операции, как ежедневная (в течение 4-х дней по два раза в день через 12 часов) инъекция генотропина.
- 3. Использование метода трансцервикальной аспирации ооцитов позволяет получать клетки независимо от дня полового цикла до двух раз в неделю без ущерба для здоровья животного. Извлекать ооциты у половозрелых телочек. Кроме этого роль in vitro значительно возросла с точки зрения экологии. Получение эмбрионов в культуре in vitro играет важную роль в получении трансгенных животных-продуцентов биологически активных веществ, различных лекарственных препаратов дешевых и экологически безопасных [7].

Технология in vitro позволяет получать неограниченное количество ооцитов и оплодотворять их в культуре in vitro и в любой момент времени получать зиготы на стадии двух пронуклеусов [3, 5, 8, 9].

Таким образом, перечисленные выше биотехнологические направления интенсификации использования генетического ресурса высокопродуктивного стада, имеющегося в области и в республике, дополняя и расширяя друг друга, должны стать неотъемлемым звеном повышения эффективности селекционного процесса, расширения возможности использования репродуктивного потенциала не только быков-производителей, но и материнского стада. Что крайне важно для Гродненской области, обладающей высоким генетическим потенциалом крупного рогатого скота, современными технологиями производства молока, кормопроизводства, кормления и содержания животных.

Цель работы. Изучить влияние различных факторов на эффективность получения эмбрионов в культуре in vitro.

Материал и методика исследований. Исследования проведены в биотехнологическом центре по репродукции сельскохозяйственных животных УО «Гродненский государственный аграрный университет».

Объектом исследований служили ооциты крупного рогатого скота и коровы-доноры ооцитов. Предмет исследований — эффективность получения эмбрионов в культуре in vitro в зависимости от возраста доноров и их физиологического состояния.

Яичники получали путем вариоэктомирования на конвейере Гродненского мясокомбината. После чего они помещались в бытовой термос с солевым раствором Хенкса при температуре 25-27°С. После доставки в лабораторию яичники освобождали от жира и жировой ткани, дважды промывали в свежем растворе Хенкса. Ооциты выделяли путем рассечения ткани яичников стерильным лезвием безопасной

бритвы в стеклянной чашке Петри диаметром 90 мм в солевом растворе Хенкса с добавлением 1% эстральной сыворотки коров, 10 ед/мл гентомицина и 1 ед/мл гепарина. Поиск и оценку качества ооцитов проводили под бинокулярным микроскопом «Olympus».

Подготовку спермы проводили по методу «флотации», суть которого заключается во всплытии наиболее активной фракции сперматозоидов в верхние слои среды для капацитации. После часовой инкубации эта фракция отмывается путем центрифугирования при 3000 об/мин в течение 10 минут и сначала в среде для капацитации (1 мл) без гепарина, затем с добавлением 50 ед/мл гепарина. После этого осадок со спермой помещается в среду для оплодотворения и дважды отмывается в том же режиме, что и в среде для капацитации.

Оплодотворение проводили замороженно-оттаянной спермой, подготовленной по методу флотации в концентрации 800-850 тыс/мл.

Совместная инкубация продолжалась в течение 18-20 часов при температуре 38 0 С, максимальной влажности и в присутствии 5% 0 СО $_{2}$ в атмосфере. После совместной инкубации ооциты отмывались от спермы и в среде для культивирования ранних зародышей помещались в 0 СО $_{2}$ инкубатор на 7-9 дней до получения эмбрионов на предимплантационных стадиях развития.

Питательные среды для созревания, капацитации и оплодотворения были приготовлены по нашим методикам на основе реактивов фирмы Sigma.

Биометрическую обработку полученного цифрового материала проводили общепринятыми методами вариационной статистики.

Результаты исследований и их обсуждение. По мнению многих отечественных и зарубежных авторов, выход и качество ооцитов во многом определяется морфофункциональным состоянием яичников.

В таблице 1 представлены усредненные данные морфологических параметров яичников, использованных в опытах по получению эмбрионов в культуре in vitro.

Таблица 1 – Параметры яичников коров, использованных для получения ооцит-кумулюсных комплексов

Показатели	M±m	lim	Cv
1	2	3	4
Длина яичника (мм)	33,1±4,1	21,3 - 43,1	47,7
Ширина яичника (мм)	19,2±1,32	10,9 - 27,1	26,6
Объем яичника (см ³)	6,8±0,62	3,5 – 12,1	35,3
Количество антральных фолликулов	18,7±1,45	11 - 32	29,9
Количество фолликулов диаметром до 2 мм	10,6±0,83	5 – 15	30,2
Количество фолликулов диаметром 2-4 мм	6,1±0,93	1 – 15	59,0
Количество фолликулов диаметром более 4 мм	2,0±0,59	1 – 5	68,0

Продолжение таблицы			
1	2	3	4
Количество ооцитов на один яичник	11,5±0,93	5 – 19	31,3
в том числе пригодных для созревания	5,9±0,57	3 – 9	37,3
непригодных к культивированию	5,6±0,92	2 - 12	63,9

Как видно из приведенных данных, средняя длина яичников составляла $33,1\pm4,1$ с колебанием от 21,3 до 43,1 мм. Ширина – $19,2\pm1,32$ при коэффициенте вариации 26,6%. Объем яичника составлял в среднем $6.8\pm0,62$ см³ (lim – 3,5-12,1).

Общее количество антральных фолликулов на один яичник составляло $18,7\pm1,45$, в том числе диаметром до 2 мм $-10,6\pm0,83$; от 2 до 4 мм $-6,1\pm0,93$ и диаметром свыше 4 мм $-2,0\pm0,59$ с размахом колебаний 5-15; 1-15 и 1-5, соответственно. Что касается выхода ооцитов, то на один яичник было получено $11,5\pm0,93$ ооцита, в том числе $5,9\pm0,57$ пригодных для постановки на дозревание (51,3%).

В таблице 2 представлены данные о взаимосвязи количества фолликулов и полученных ооцитов с объемом яичника.

Как показывает анализ данных, наблюдается четкая тенденция увеличения указанных показателей у яичников объемом свыше $6.0~{\rm cm}^3$, за исключением количества пригодных для культивирования ооцитов.

При этом отмечается достоверное (P<0,05) увеличение количества фолликулов диаметром 2-4 мм.

Таблица 2 – Взаимосвязь количества ооцитов и фолликулов с объемом яичников

	Объем яичников, см ³		
Показатели	до 6,0	более 6,0	
	n=7	n=8	
Количество антральных фолликулов	16,6±1,42	20,5±2,30	
Количество фолликулов диаметром до 2 мм	9,1±1,46	10,6±4,50	
Количество фолликулов диаметром 2-4 мм	4±0,81	7,9±1,35*	
Количество фолликулов диаметром свыше 4 мм	2±0,96	2,0±0,60	
Количество ооцитов на один яичник	10,8±1,15	12,5±1,50	
Количество ооцитов пригодных для культивирования	6,6±1,3	5,2±1,28	
Количество ооцитов не пригодных для культивирования	4,3±0,99	6,7±1,25	

В таблице 3 представлены результаты исследований по определению эффективности получения эмбрионов вне организма в зависимости от порядкового номера лактации.

Анализ представленных данных показывает, что достоверные данные получены только по выходу качественных ооцитов. При использовании доноров первой и второй лактации выход качественных клеток превышал их выход у доноров 3 и 4 лактации на 12,4 и 15,7; 13,4 и 16,7% при P<0,01. По остальным показателям достоверных раз-

личий не отмечено. Уровень дробления колебался от 39,2 до 49,7%, а выход бластоцист от 6,2 до 10,3%.

Таблица 3 — Влияние количества лактаций на количество и качество ооцитов и их оплодотворяемость

Показатели	Порядковый номер лактации				
Показатели	1-я	2-я	3-я	4-я	
Количество доноров, п	11	10	12	9	
Количество ооцитов всего, п	208	197	271	184	
Количество ооцитов на донора, n	18,9±2,2	19,7±2,0	22,6±1,54	20,4±1,67	
Количество качествен- ных ооцитов, n - %	148 -71,7**	142 – 72,1**	159 – 58,7	102 – 55,4	
в т.ч. на донора	13,4±1,9	14,2±1,68	13,2±1,28	11,3±0,9	
Оплодотворено ооци- тов, n - %	148 – 100	142 - 100	159 - 100	102 - 100	
Уровень дробления	58 - 39,2	60 – 42,2	79 – 49,7	46 – 45,1	
Выход морул- бластоцист	26 – 17,6	22 – 15,5	29 – 18,2	16 – 15,7	
в т.ч. бластоцист	2 - 7,7	2 - 9,1	3 – 10,3	1 - 6,2	

Одной из наиболее распространенных причин выбытия животных на мясокомбинат являются заболевания репродуктивных органов. Как видно из таблицы 4, в которой приведены данные по изучению влияния дисфункции яичников, эндометрита и заболевания вымени на результаты культивирования ооцитов в системе in vitro.

Таблица 4 – Эффективность получения эмбрионов крупного рогатого скота в системе in vitro в связи с состоянием репродуктивных органов

	Группы животных				
Показатели	Контроль	Гипо- функция яични- ков	Киста яични- ков	Эндомет- рит	Мастит
1	2	3	4	5	6
Количество жи- вотных, п	10	9	7	12	7
Получено ооцитов всего, п	280	90	91	252	161
в т.ч. качествен- ных, n - %	163 – 58,2	16 – 17,9	19 – 20,9	98 – 38,9	70 – 43,5
Получено ооцитов на донора всего, п	28±2,03***	10±1,23	13±2,1	19±1,5***	23±1,65
в т.ч. качествен- ных, п	16,3±0,97	1,8±0,52	2,7±0,29	8,2±0,88	10,0±1,11
%	58,2	18,0	14,2	8,4	14,3
Оплодотворено ооцитов, n	163 - 100	16 - 100	19 - 100	98 - 100	70 - 100

Продолжение таблицы 4

продолжение полицы					
1	2	3	4	5	6
Количество дро- бящихся зароды- шей, n - %	85 – 52,1	2* - 12,5	3* - 15,6	36 – 36,7	22 – 41,4
Выход морул- бластоцист, n - %	54 – 33,1		ı	8 – 8,2	8 – 11,4
в т.ч. отличного качества, n - %	104 – 63,8		l	4 – 50,0	4 – 50,0
Выход бластоцист, n - %	39 – 72,2		l	1 – 25,0	2 – 50,0
из них отличного качества, n - %	35 – 89,7	_		1 - 100	2-66,7

Анализ приведенных данных показывает, что наиболее негативное влияние на успех работы при получении бластоцист оказывает наличие у животного заболеваний яичников (гипофункция и кистозное преобразование).

При наличии эндометрита и мастита выход ооцитов на донора сокращается на 32,1 и 17,8% (P<0,001), в том числе качественных на 49,7 и 38,6% (P<0,001). Уровень дробящихся зародышей — на 15,4 и 10,7%, а выход бластоцист (по отношению к дробящимся зародышам) — на 13,8%. Их наличие достоверно снижает выход ооцитов на донора на 64,3 и 53,6% (P<0,01), в том числе качественных на 88,9 и 83,4%, соответственно (P<0,001).

Заключение. Таким образом, как показал анализ полученных результатов, средняя длина яичников составила $33,1\pm4,1$ с колебанием от 21,3 до 43,1 мм. Ширина $-19,2\pm1,32$ при коэффициенте вариации 26,6%. Объем яичника в среднем составил $6,8\pm0,62$ см³ (lim -3,5-12,1). На один яичник было получено $11,5\pm0,93$ ооцита, в том числе $5,9\pm0,57$ пригодных для постановки на дозревание (51,3%).

Наблюдается четкая тенденция увеличения количества фолликулов и ооцитов у яичников объемом свыше $6.0~{\rm cm}^3$, за исключением количества пригодных для культивирования клеток. Кроме этого, отмечается достоверное (P<0.05) увеличение количества фолликулов диаметром $2-4~{\rm mm}$.

При использовании доноров первой и второй лактации выход качественных клеток превышал их выход у доноров 3 и 4 лактации на 12,4 и 15,7; 13,4 и 16,7% при P<0,01. Уровень дробления колебался от 39,2 до 49,7%, а выход бластоцист от 6,2 до 10,3%.

При наличии эндометрита и мастита выход ооцитов на донора сокращается на 32,1 и 17,8% (P<0,001), в том числе качественных — на 49,7 и 38,6% (P<0,001). Уровень дробящихся зародышей на 15,4 и 10,7%, а выход бластоцист (по отношению к дробящимся зародышам) – на 13,8%.

ЛИТЕРАТУРА

- 1. Эрнст, Л.К., Сергеев, Н.И. Трансплантация эмбрионов сельскохозяйственных животных. М.: Агропромиздат, 1989. 302 с.
- 2. Brachett, BG. Normal development following in vitro fertilization in the cow / B.G. Brachett, D. Bausque, W.J. Donawick // Biol. Reprod. 1982. Vol. 27. P. 147-158.
- 3. De Loos, F. Morphology of immature bovine oocytes / F. De Loos, P. Van Mawik // Gametes Res. 1989. Vol. 24. P. 197-204.
- 4. Dewit, A. Effect of urea during in vitro maturation on nuclear maturation and embryo development of bovine Cumulus-Oocyte-complexes / A. Dewit, M.L. Cesar // J. Dairy Sci. 2001.- Vol. 84. P. 1800-1804.
- 5. Dominguez, M.M. Effects of body condition, reproductive status and breed on follicular population and oocyte quality in cows / M.M. Dominguez // Theriogenology. 1995. Vol. 43. P. 1405 1418.
- 6. Kato, H. Effects of follicular fluid and follicular walls on bovine oocyte maturation // H. Kato // Theryogenology. 1998. Vol. 49, №1. P. 313.
- 7. Kendrick, K.W. Effects of energy balance on hormones, ovarian activity, and recovered oocytes in lactating Holstein cows, using transvaginal follicular aspiration / K.W. Kendrick, T.L. Bailey, R.E. Pearson, A.S. Garst // J. Dairy Sci. 1999. Vol. 82, P. 1731-1740.
- 8. Larocca, C. Effect of follicular fluid from different sized follicles on in vitro development of bovine embryos produced In Vitro / C. Larocca, J. Calvo, G. Roses // Theryogenology. 1998. Vol. 49, №1. P. 289.
- 9. Vassena, R. Morphology and developmental competence of bovine oocytes relative to follicular status / R. Vassena, J. Singh, P. Adams, S. Allodi // Thriogenology. 2003. Vol. 60, №5. P. 923-932.
- 10. Ward, FA. Factors affecting recovery and quality of oocytes for bovine embryo production in vitro using ovum pick-up technology / F.A. Ward, P. Lonergan, M.P. Boland, B.P. Enright // Theriogenology. − 2000. Vol. 54, №3. P. 433-446.

УДК 636. 52/. 58. 087

ПРОДУКТИВНОСТЬ РЕМОНТНОГО МОЛОДНЯКА КУР ПРИ ИСПОЛЬЗОВАНИИ В КОМБИКОРМАХ НОВОЙ КОРМОВОЙ ДОБАВКИ

В.Ю. Горчаков¹, Я.В. Василюк¹, В.В. Дадашко²

¹УО «Гродненский государственный аграрный университет»

г. Гродно, Республика Беларусь

²РУП «Опытная научная станция по птицеводству»

г. Заславль, Минская обл., Республика Беларусь

Аннотация. Проведены исследования по использованию новой кормовой добавки на основе микробных белков КД-Л в кормлении ремонтного молодняка кур. В результате проведенных исследований установлено, что скармливание новой кормовой добавки оказывает положительное влияние на интенсивность