Заключение. Введение в комбикорма молодняка уток немецкого кросса «Stolle Seddin Vital» рапсового жмыха положительно повлияло на продуктивность птицы. В опытных группах утят, получавших рапсовый жмых в составе комбикорма, затраты корма на единицу продукции уменьшались на 1,0–2,4% по сравнению с контрольной группой. Затраты протеина и обменной энергии на единицу продукции снизились на 2,1–2,9 и 2,1–3,3% соответственно. Полученная прибыль за период выращивания утят опытных групп превышала этот показатель контрольной группы на 637,5–936,5 тыс. руб. в расчете на тысячу голов. Рентабельность производства при введении рапсового жмыха в комбикорм взамен подсолнечникового шрота увеличилась на 8,4–12,3%.

ЛИТЕРАТУРА

- 1. Бевзюк, В.Н. Нетрадиционные корма и ферментные препараты в кормлении мясной птицы: автореф. дис. ...д-ра. с.-х. наук: 06.02.02 / В.Н. Бевзюк; пос. Персиановский, 2005.-47 с.
- 2. Василюк, Я.В. Птицеводство: учеб.-метод. пособ. для самостоятельной подготовки студентов по специальности «Зоотехния» / Я.В. Василюк. Гродно: Изд-во УО «ГГАУ», 2005.-92 с.
 - 3. Егоров, И. Кормление уток / И. Егоров // Птицеводство. 2008. №3. С. 51–54.
- Захаров, А.А. Рапс выгодная культура / А.А. Захаров // Земледелие. 1998. №3. С.14.
- 5. Ибрагимов, М.И. Рапсовый шрот для ремонтного молодняка / М.И. Ибрагимов [и др.] // Птицеводство 2007. N2. C.18.
- 6. Кормление сельскохозяйственной птицы / В.И.Фисинин[и др.]; под общ. ред. В.Ф. Кузнецовой. Сергиев Посад, 2004. 375 с.
- 7. Лошкомойников, И. А. Масличные культуры как источник протеина в питании животных / И.А. Лошкомойников // Научные результаты агропромышленному производству / Курган гос. с.-х. акад. Курган, 2004. Т.2. С. 33–35.
- 8. Лукомец, В.М. Семена масличных культур сырье для производства пищевого и кормового белка / В.М. Лукомец, Н.И. Бочкарев // Аминокислотное питание животных и проблема белковых ресурсов / Кубан. гос. аграр. ун-т. Краснодар, 2005. С. 233—256.

УДК: 636.2.03.087.72:612.017.1

ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ПИКУМИНА В РАЦИОНАХ ДОЙНЫХ КОРОВ В ЗИМНИЙ ПЕРИОД

В.А. Медведский, М.М. Карпеня, В.Н. Подрез

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

(Поступила в редакцию 28.05.2010 г.)

Аннотация. Проведено изучение эффективности использования местных минеральных источников в рационах дойных коров. В результате исследований установлено, что применение минеральной добавки на основе пикумина в дозе 0,3 % от сухого вещества в

рационах дойных коров позволяет увеличить продуктивность на 5,2%, повысить качество молока, естественную резистентность организма на 0,5-5,2% и благоприятно влияет на показатели крови.

Summary. The organized study to efficiency of the use the local mineral sources in ration dairy cortex. As a result of studies is installed that using the mineral additive on base of pikumine flour in dose 0.3% from dry material in ration dairy cortex allows to enlarge productivity on 5.2%, raise the quality milk, natural resistance organism on 0.5-5.2% and favorable told on factor shelters.

Введение. В повышении качества животноводческой продукции ведущая роль принадлежит организации интенсивной системы кормопроизводства и современной индустрии кормов, включая производство различных балансирующих добавок и биологически активных веществ, гарантирующих реальное обеспечение полноценного кормления всех видов сельскохозяйственных животных, особенно необходимого в жестких условиях промышленной технологии [2, с. 34—67], [4, с.12—19], [7].

В осуществлении полноценного кормления сельскохозяйственных животных по детализированным нормам большая роль принадлежит комбикормам, премиксам и различным кормовым добавкам. Они обеспечивают балансирование рационов по питательным и биологически активным веществам в соответствии с потребностью животных, способствуют максимальной продуктивности и обеспечивают здоровье животных [2, с.28–36], [5 с. 56–78], [1].

В настоящее время поиск новых нетрадиционных источников минерального питания при производстве молока и повышении его качества являются важнейшим направлением в научных разработках по совершенствованию рационов кормления лактирующих коров [8, с. 8–21], [3,9].

Одним из таких материалов является пикумин – отходы при производстве керамзитового гравия, богатые макро- и микроэлементами. Он может быть использован в качестве источника минеральных веществ в кормлении коров [3].

Ключевым фактором оценки сбалансированности и полноценности кормления лактирующих коров является состояние здоровья организма и молочная продуктивность [3], [8, с. 56–78].

Цель работы: установить эффективность использования пикумина в рационах дойных коров в зимний период.

Материал и методика исследований. Экспериментальная часть работы выполнена в условиях СПК «Ведренский» Чашникского района Витебской области на дойных коровах черно-пестрой породы в зимний период. Согласно схеме опыта (таблица 1) по принципу параналогов было сформировано 4 группы коров с учетом возраста, жи-

вой массы, стадии лактации, среднесуточного удоя. Продолжительность опыта составила 120 дней, подготовительный период длился 15 дней.

Таблина 1 – Схема опыта

Группа	Кол-во коров	Продолжи- тельность	Условия кормления
	(n)	опыта, дней	
I— контрольная	10		ОР (сенаж злак, многолет. трав, силос кукурузный, зерно плющ., свекла корм., барда свежая)
II–опытная	10	120	OP + 0,1 % пикумина к CB рациона
III–опытная	10		OP + 0,2 % пикумина к CB рациона
IV-опытная	10		OP + 0,3 % пикумина к CB рациона

Отбор проб молока осуществляли в соответствии с требованиями ГОСТа 3622–68 «Молоко и молочные продукты. Отбор проб и подготовка их к испытанию». Определение показателя титруемой кислотности проводилось титрометрическим методом, в соответствии с требованиями ГОСТа 3624–92 «Молоко и молочные продукты. Титрометрические методы определения кислотности». Количество соматических клеток в молоке определяли на приборе «Соматос-М» в соответствии с ГОСТом 23453. При выполнении анализов молока руководствовались требованиями государственных стандартов, а также методическими указаниями.

Цифровой материал, полученный по результатам исследований, обработан методом биометрической статистики с помощью ПП Excel и Statistica.

Результаты исследований и их обсуждение. В результате проведенных исследований установлено, что использование минеральной добавки на основе пикумина оказало положительное влияние на продуктивные показатели опытных коров. Так, в начале опыта физикохимические показатели молока были примерно на одном уровне (табл. 2). В конце опыта коровы IV группы, в рацион которых вводили пикумин в дозе 0,3 % от сухого вещества, превосходили аналогов I группы по среднесуточному удою на 0,7 кг, или 5,2 %, II группы — на 0,4 кг, или 3,0 %, и III группы — на 0,3 кг, или на 2,2 %.

Таблица 2 – Физико-химические показатели молока

	Показатели качества молока						
Груп- пы	средне- суточ- ный удой, л	плот- ность, кг/м ³	содер- жание жира, %	содер- жание белка, %	COMO,	титр. кислот- ность, ⁰ Т	количество соматических клеток, тыс./см ³
			нач	ало опы	та	•	
I	12,3± 0,79	1028,0± 0,21	$3,68\pm 0,153$	3,17± 0,029	8,40± 0,042	17,0± 0,39	277,3± 18,03
II	12,5±	1027,9±	3,66±	3,16±	8,43±	17,1±	275,2±
	0,94	0,19	0,132	0,039	0,078	0,41	16,02
III	12,1±	1027,3±	3,67±	3,18±	8,32±	17,2±	261,9±
	1,02	0,36	0,062	0,013	0,117	0,29	16,57
IV	11,9±	1028,2±	3,71±	3,20±	8,37±	17,0±	279,1±
	0,82	0,16	0,160	0,021	0,091	0,33	30,46
	конец опыта						
I	13,5±	1027,8±	3,70±	3,18±	8,41±	17,2±	278,4±
	1,54	0,26	0,083	0,023	0,039	0,39	39,49
II	13,9±	1028,0±	3,73±	3,20±	8,50±	17,0±	270,2±
	0,48	0,18	0,062	0,032	0,105	0,33	27,31
III	13,8±	1028,1±	3,73±	3,21±	8,51±	16,8±	267,5±
	0,88	0,22	0,044	0,011	0,102	0,25	29,61
IV	14,2±	1028,3±	3,76±	3,26±	8,50±	16,2±	264,8±
	0,66	0,27	0,092	0,007	0,114	0,24	30,30

По плотности молока существенных отличий между коровами подопытных групп не наблюдалось. Но у животных, получавших дополнительно к рациону минеральную добавку, прослеживалась тенденция к повышению этого показателя. Такая же закономерность просматривалась по содержанию жира и белка в молоке. Так, у животных IV группы содержание жира в молоке было выше на 0,06%, у коров II и III групп — на 0,03 % по сравнению с контролем. Содержание белка было больше в молоке коров II, III и IV опытных групп соответственно на 0,02, 0,03 и 0,08 %, чем у аналогов контрольной группы.

Количество сухого молочного остатка (СОМО) соответствовало требованиям СТБ 1598–2006 «Молоко коровье. Требования при закупках». Более высокий этот показатель наблюдается у животных, в ра-

ционы которых вводили местную минеральную добавку. Титруемая кислотность молока коров в конце опыта во II, III и IV опытных группах имела тенденцию к снижению по сравнению с животными контрольной группы. На наш взгляд, это свидетельствует о том, что использование местной минеральной добавки способствует снижению кислотности рациона, а это, в свою очередь, уменьшает кислотность молока.

Количество соматических клеток в молоке подопытных животных всех групп соответствовало сорту «экстра» (до 300 тыс./см³). У коров IV группы количество соматических клеток снизилось на 13,6 тыс./см³, или на 4,9 %, у III группы — на 10,9 тыс./см³, или на 3,9 %, и II группы — на 8,2 тыс./см³, или на 2,9 % по сравнению с контролем.

Полученные данные по продуктивности дойных коров подтверждают эффективность использования местной минеральной добавки на основе пикумина в дозе 0,3 % от сухого вещества рациона.

Использование местной минеральной добавки на основе пикумина благоприятно отразилось на гематологических показателях коров. В начале опыта существенных различий по гематологическим показателям у подопытных животных всех групп не наблюдалось (таблица 3).

Таблица 3 – Гематологические показатели коров

	Гематологические показатели						
Группы	эритроциты, $10^{12}/\pi$	тромбоциты, 10^9 /л	лейкоциты, $10^9/л$	гемоглобин, г/л			
	в начале опыта						
I	5,71±0,361	382,4±9,51	6,81±0,921	84,2±2,01			
II	$5,81\pm0,042$	396,4±3,55	$6,53\pm0,404$	84,8±2,54			
III	5,54±0,302	385,6±12,18	6,72±0,345	82,6±2,69			
IV	5,70±0,324	383,2±16,74	6,49±0,464	82,8±7,57			
в конце опыта							
I	5,78±1,223	381,2±76,42	$6,86\pm0,436$	84,6±4,616			
II	> 5,95±0,056	396,9±22,09	$6,54\pm0,114$	87,5±2,724			
III	6,19±0,442	395,4±10,03	$6,48\pm0,232$	88,4±2,505			
IV	6,34±0,201	398,1±29,02	6,46±1,302	89,0±1,952			

В конце опыта количество эритроцитов у животных IV группы было больше на 9,7 %, III группы — на 7,1 %, II группы — на 2,9 % по сравнению с контролем. По количеству тромбоцитов просматривается такая же закономерность, что и по количеству эритроцитов. Количество лейкоцитов в крови опытных животных имело тенденцию к снижению. Так, у коров IV группы этот показатель был ниже по сравнению с

контролем на 5,8 %, у коров III группы на 5,5 % и у коров II группы на 4,7 %.

Содержание гемоглобина в крови коров всех групп соответствовало нормативным показателям. Коровы IV группы по этому показателю превосходили аналогов I группы на 4,4 г/л, или на 5,2%, III группы — на 3,6 г/л, или на 4,5 %, у животных II группы гемоглобина было меньше на 2,9 г/л, или на 3,4%.

Применение комплексной минеральной добавки пикумин положительно сказалось на биохимических показателях крови коров. При формировании подопытных групп основные показатели были достаточно близкими (таблица 4).

Таблица 4 – Биохимические показатели крови коров

		Биохимические показатели крови						
Груп- пы	общий белок, г/л	альбуми- ны, г/л	мочевина, ммоль/л	холестерин, ммоль/л	глюкоза, ммоль/л			
		в на	чале опыта					
I	76,0±1,71	39,5±2,74	2,3±0,06	4,58±0,25	2,58±0,12			
II	78,6±1,07	39,1±0,87	2,4±0,07	4,83±0,64	2,56±0,65			
III	76,5±5,06	37,5±1,71	2,2±0,15	4,81±0,22	2,47±0,08			
IV	80,4±3,93	38,3±1,82	2,4±0,22	4,53±0,21	2,62±0,13			
в конце опыта								
I	84,1±1,71	41,3±2,33	2,3±0,11	4,56±0,25	2,75±0,09			
II	88,5±0,69	42,6±0,45	2,3±0,22	4,41±0,14	2,68±0,35			
III	91,4±2,41	44,3±0,35	2,1±0,14	4,28±0,08	2,94±0,11			
IV	92,1±0,76	44,5±0,82	2,2±0,09	4,34±0,26	2,96±0,16			

В конце опыта по многим биохимическим показателям крови наблюдалась лучшая картина у животных, получавших в составе рациона пикумин. Содержание общего белка у коров IV группы было выше на 8,0 г/л, или на 9,5 %, III группы — на 7,3 г/л, или на 8,7 %, II группы на 4,4 г/л, или на 5,2 %, по сравнению с аналогами I контрольной группы. По количеству альбуминов прослеживается такая же закономерность, как и по общему белку.

Следует отметить, что содержание мочевины в крови животных II—IV опытных групп снижается. Это может свидетельствовать о нормализации белкового обмена и улучшении работы печени. По количеству холестерина в крови подопытных животных просматривается такая же тенденция снижения, как и по мочевине. Это, на наш взгляд, может указывать о стабилизации холестеринсинтезирующей функции печени.

Содержание глюкозы в крови коров, получавших с основным рационом пикумин, заметно увеличилось по отношению к животным I контрольной группы.

Важными показателями, отражающими интенсивность обменных процессов в организме и усвоение макро- и микроэлементов, является содержание в сыворотке крови минеральных веществ. В начальный период опыта, до внесения пикумина, существенных отличий по минеральному составу крови между животными подопытных групп не наблюдалось (таблица 5).

Таблица 5 – Минеральный состав крови коров

Груп	Минеральный состав крови						
Груп пы	кальций,	фосфор,	марганец,	кобальт,	медь,	цинк,	
1151	ммоль/л	ммоль/л	мкмоль/л	нмоль/л	мкмоль/л	мкмоль/л	
			в начале от	тыта 🗼			
I	2,64±	1,65±	3,32±	559±	11,62±	46,92±	
1	0,16	0,10	0,10	10,6	0,57	0,57	
II	$2,67\pm$	1,64±	3,24±	531±	11,49±	$44,71 \pm$	
11	0,09	0,04	0,06	10,5	0,19	0,67	
III	2,66±	1,68±	3,34±	542±	12,01±	45,63±	
111	0,02	0,10	0,10	8,5	0,75	1,21	
IV	2,61±	1,59±	3,47±	543±	11,38±	44,41±	
1 V	0,09	0,08	0,14	8,1	0,41	1,07	
в конце опыта							
Ι	2,62±	1,66±	3,34±	558±	11,36±	$47,20\pm$	
	0,14	0,08	0,13	18,0	0,50	1,52	
II	2,80±	1,69±	3,41±	562±	11,73±	51,72±	
	0,09	0,07	0,08	6,6	0,25	0,94	
III	2,86±	1,68±	$3,66 \pm$	551±	12,06±	$52,35\pm$	
111	0,03	0,07	0,13	12,6	0,40	0,34	
IV	2,93±	1,89±	$3,62 \pm$	584±	12,51±	$52,74\pm$	
1 V	0,06	0,17	0,21	19,0	0,20	0,41	

В конце опыта в крови коров IV группы содержание кальция увеличилось на 11,8%, у III группы – на 9,2%, у II группы – 6,9% по сравнению с аналогами I контрольной группы. Такая же картина наблюдалась и по содержанию фосфора.

У животных, получавших более высокую дозу пикумина (0,3%), уровень микроэлементов в крови увеличивался, т.е. просматривается такая тенденция: с увеличением дозы пикумина в рационах коров повышается содержание цинка (на 9,6–11,7%), марганца (на 2,1–8,4%),

кобальта (на 0,7–4,7%) и меди (на 3,3–10,1%). Такое увеличение в крови макро— и микроэлементов является результатом благоприятного воздействия испытуемой добавки.

В результате анализа полученных данных (таблица 6) выявлено, что использование в рационах коров минеральной добавки на основе пикумина оказало положительное влияние на показатели естественной резистентности организма. Так, лизоцимная активность сыворотки крови коров, получавших пикумин, в конце опыта возросла в IV группе на 0,5%, во II и III группах — соответственно на 0,2 и 0,4% по сравнению с контролем. Бактерицидная активность сыворотки крови у коров IV группы была на 5,2%, III и II группы на 3,0 и 2,3% выше, чем у аналогов I контрольной группы. Фагоцитарная активность лейкоцитов в конце опыта была больше также у коров II (на 1,3%), III (на 1,9%) и IV (на 2,5%) групп, получавших минеральную добавку в количестве 0,2 и 0,3% от сухого вещества рационов в сравнении с контролем.

Таблица 6 – Естественная резистентность организма коров

Группы	Лизоцимная активность, %	Бактерицидная активность, %	Фагоцитарная активность лейкоцитов, %		
	F	в начале опыта			
I	4,5±0,32	78,5±1,86	29,4±1,07		
II	4,6±026	79,5±1,41	30,2±1,11		
III	4,3±0,46	79,7±1,02	30,1±1,54		
IV	4,3±0,31	76,4±1,98	29,9±1,21		
в конце опыта					
I	4,5±039	76,9±1,985	30,0±1,25		
II	4,7±0,51	79,2±1,21	31,3±1,24		
III	4,9±056	78,9±2,01	31,9±1,65		
IV	5,0±032	82,1±1,28	32,5±1,35		

Таким образом, у животных опытных групп, получавших с основным рационом пикумин, уровень неспецифической резистентности организма был выше по сравнению с контрольными животными, что свидетельствует о положительном влиянии испытуемой минеральной добавки из местных источников.

Заключение. 1. В результате проведенных исследований установлено, что оптимальной дозой пикумина для дойных коров в зимний период является 0,3% к сухому веществу рациона.

2. Доказана возможность повышения среднесуточного удоя коров на 5,2%, содержания жира и белка в молоке на 0,06 и 0,08%, снижения количества соматических клеток на 4,9%.

3. Использование местной минеральной добавки положительно отражается на показателях крови, о чем свидетельствует увеличение эритроцитов (на 9,7%), тромбоцитов (на 4,4%), гемоглобина (на 5,2%), общего белка (на 9,5%), а также макро- и микроэлементов. Введение в рацион коров пикумина позволяет повысить показатели естественной резистентности организма на 0.5 - 5.2%.

ЛИТЕРАТУРА

- 1. Дегтерев, Г.П. Производство молока высокого качества / Г.П. Дегтерев, Ю.А. Кочеткова // Зоотехния. 2002. N10. С. 27–29.
- 2. Иоффе, В.Б. Корма и молоко / В.Б. Иоффе. Молодечно: УП Типография «Победа», 2002. 231 с.
- 3. Медведский, В.А. Использование пикумина в качестве минеральной кормовой добавки для телят / В.А. Медведский, И.В. Щебеток // Ветеринарная медицина Беларуси. -2003. №3. C. 27.
- 4. Пилюк, Н.В. Оптимизация минерального питания жвачных животных с использованием местных источников сырья / Н.В. Пилюк // Весці акадэміі аграрных навук Рэспублікі Беларусь. 2001. №1. С. 56-59.
- 5. Подобед, Л.И. Основы эффективного кормления дойных коров: справочнометодическое руководство / Л.И. Подобед. – Одесса, 2000. – 205 с.
- 6. Почтовая, И.Г. Основные направления повышения качества молока в современных условиях / И.Г. Почтовая // Агроэкономика. 2005. №8. С. 37-39.
- 7. Прокофьева, Г.И. Качественный состав молока коров в зависимости от уровня кормления / Г.И. Прокофьева, Ф.Н. Абрапальский // Главный зоотехник. 2006. №9. С. 33–34.
- 8. Радчиков, В.Ф. Комбикорма и белково-витаминно-минеральные добавки для крупного рогатого скота с включением местных источников сырья: монография / В.Ф. Радчиков [и др.] Витебск: УО ВГАВМ, 2006. –110 с.
- 9. Славецкий, В.Б. Эффективность использования минерально-витаминной смеси из местных источников в рационах молодняка крупного рогатого скота / Славецкий В.Б. [и др.] // Зоотехническая наука Беларуси. 2002. №10. С. 27–29.

УДК 636.22/28.085.52

ПОТРЕБНОСТЬ И ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ ХИМИЧЕ-СКИ КОНСЕРВИРОВАННЫХ КОРМОВ НА ПРИРОСТ ЖИВОЙ МАССЫ МОЛОДНЯКА КРУПНОГО РОГАТОГО СКОТА

Т.А. Мясоедова

УО «Белорусская государственная сельскохозяйственная академия», г. Горки, Республика Беларусь

(Поступила в редакцию 03.06.2010 г.)

Аннотация. Раскрывается актуальность темы, особенности использования энергии молодняком крупного рогатого скота в зависимости от ее концентрации в рационах силосно-концентратного типа с включением силосов, заготовленных по различным технологиям из различного сырья. Установлена взаимосвязь продуктивности откарм-