Таблица – Влияние применения физиологически активных веществ на урожайность ячменя

	Урожайность, ц/га					Прибав-
Вариант опыта	2005 г.	2006 г.	2007 г.	2008 г.	сред- нее	ка, ц/га
1. N ₆₀ P ₈₀ K ₁₂₀ - фон	49,3	56,5	34,2	64,8	51,2	
2. Фон+эпин	57,0	59,3	36,4	69,4	55,5	4,3
3. $\Phi_{OH} + N_{30}^{\prime *}$	55,9	58,2	34,5	65,1	54,2	3,0
4. Фон+N ⁷ ₃₀ +эпин	61,1	58,7	39,1	69,1	57,0	5,8
HCP ₀₅	2,8	3,1	2,1	2,5	-	-

^{*} Азотные удобрения применялись в фазу начало трубкования растений

При применении эпина урожайность ячменя повышается в среднем до $55,5\,$ ц/га, при благоприятных погодных условиях достигает уровня 69,4, а неблагоприятных — $36,4\,$ ц/га. Прибавка урожайности от применения эпина в среднем за 4 года составила $4,3\,$ ц/га, при более благоприятных погодных условиях ($2008\,$ г.) — 4,6, а при неблагоприятных — $2,2\,$ ц/га. В варианте с одновременным применением эпина и азотных удобрений в подкормку (вар. 4) урожайность ячменя в среднем за 4 года возросла по сравнению с фоновым вариантом на $5,8\,$ ц/га. Прибавка от применения эпина составила $2,8\,$ ц/га. При этом в более благоприятных погодных условиях прибавка составила $4,0\,$ ц/га, а в менее благоприятных погодных условиях $-1,6\,$ ц/га, т.е. при неблагоприятных погодных условиях эффективность эпина снижается.

Таким образом, применение эпина позволяет повысить урожайность ячменя на 5 ц/га и более. Более эффективной обработка посевов ячменя эпином оказалась при внесении его в чистом виде и при благоприятных погодных условиях.

УДК 631.872:631.582:631.445.2

ЭФФЕКТИВНОСТЬ ЗАПАШКИ СОЛОМЫ КУЛЬТУР ВОЗДЕЛЫВАЕМЫХ В СЕВООБОРОТЕ НА ДЕРНОВО-ПОДЗОЛИСТОЙ СУПЕСЧАНОЙ ПОЧВЕ Серая Т.М., Богатырева Е.Н.

РУП «Институт почвоведения и агрохимии»

г. Минск, Республика Беларусь

Одним из путей пополнения запасов гумуса в почвах является запашка соломы. По содержанию углерода солома в 3,5-4,0 раза

превосходит подстилочный навоз, что является чрезвычайно важным в регулировании баланса органического вещества почвы. Из 1 т соломы может синтезироваться 120-220 кг гумуса, в то время как из 1 т соломистого навоза — 30-50 кг. Однако данный источник органического вещества характеризуется различным соотношением углерода к азоту, что обуславливает неодинаковую скорость гумификации и требует корректировки системы применения минеральных удобрений, и в первую очередь, азотных.

Цель исследований – установить эффективность запашки соломы культур возделываемых в севообороте на дерново-подзолистой супесчаной почве.

Исследования проводили в 2006—2010 гг. в РУП «Э/б им. Суворова» Узденского района на дерново-подзолистой супесчаной, подстилаемой с глубины 80 см моренным суглинком, почве в севообороте со следующим чередованием культур: кукуруза на зеленую массу — рапс яровой — озимое тритикале — люпин узколистный на зерно — ячмень яровой. Агрохимическая характеристика пахотного слоя перед закладкой опыта: р $H_{\rm KCI}$ 5,6-5,9, содержание подвижных форм P_2O_5 — 140-160 мг/кг, K_2O — 160-180 мг/кг почвы, гумуса — 2,23-2,52%. Подстилочный навоз КРС в дозах 20, 40 и 60 т/га вносили под кукурузу. Среднегодовая доза минеральных удобрений за севооборот составила $N_{87}P_{58}K_{118}$.

За ротацию севооборота в зависимости от вариантов опыта было запахано в почву соломы возделываемых культур (рапса, тритикале, люпина и ячменя) от 8,3 до 15,7 т/га. С этим количеством соломы в почву было внесено 3,3-6,2 т/га углерода, 62-125 кг/га азота, 26-52 кг фосфора, 133-318 кг/га калия, 40-78 кг/га кальция и 19-34 кг/га магния.

При запашке соломы для создания оптимального соотношения С/N в почву было дополнительно внесено 48-116 кг/га азота в зависимости от количества запахиваемой соломы. В результате в пересчете на условный навоз за ротацию севооборота за счет запашки соломы с учетом дополнительного азота в почву было внесено 29-55 т/га условного навоза.

Запашка соломы не оказала существенного влияния на продуктивность севооборота по сравнению с аналогичными вариантами без запашки соломы. Содержание элементов питания в основной и побочной продукции в вариантах с запашкой соломы колебалось в тех же пределах, что и в вариантах без запашки соломы и соответственно хозяйственный и удельный вынос на двух фонах характеризовался близкими величинами.

Не оказав существенного влияния на продуктивность севооборота, запашка соломы обеспечила более благоприятный баланс основных

элементов питания по сравнению с вариантами, где солому не запахивали. Сравнительный анализ изменения агрохимических показателей почвы в аналогичных вариантах без запашки соломы и на фоне запашки соломы показал, что за счет запашки соломы содержание гумуса в почве увеличилось на 0.04-0.07%, подвижных форм P_2O_5 — на 8-16 мг/кг, K_2O — на 20-29 мг/кг.

При высокой продуктивности севооборота (94,8 ц к.ед./год) внесение $N_{87}P_{58}K_{118}$ на фоне 12 т/га навоза было недостаточным для поддержания бездефицитного баланса гумуса: эти дозы удобрений обеспечили только небольшой прирост подвижных форм фосфора и калия. При запашке за севооборот 14 т/га соломы для поддержания бездефицитного баланса гумуса было достаточно внесения подстилочного навоза в дозе 4 т/га севооборотной площади.

Расчеты сравнительной оценки затрат на запашку соломы и внесение подстилочного навоза показали, что при уборке комбайнами, оборудованными измельчителями, запашка соломы не требует дополнительных операций по обработке почвы по сравнению с участками, где солома убирается с поля. Необходимым дополнительным мероприятием является внесение азота. При запашке 1 т/га зерновой соломы следует внести 10 кг азота, что в денежном выражении составляет 5,9 у.е. Запашка 1 т соломы с учетом внесения дополнительного азота эквивалентна внесению 3,5 т подстилочного навоза. Затраты на внесение 1 т подстилочного навоза на расстояние от фермы 5 км по прямоточной технологии составляют 3,55 у.е., по перегрузочной технологии – 4,49 у.е.; на расстояние 10 км - соответственно 4,35 у.е. и 5,29 у.е. Таким образом, затраты на запашку соломы с учетом дополнительного внесения азота в сравнении с затратами на внесение эквивалентного количества подстилочного навоза при удалении поля от фермы на 5 км в 2,1-2,7 раза меньше, при удалении поля от фермы на 10 км – в 2,6-3,1 раза меньше.