Через 120 мин. происходит падение защитной роли соскового канал (до минимальной) на 72-76%, после чего в интервале 120-140 мин. наблюдается снова подъем барьерной функции, которая возрастает в период 4-8 часов после доения почти на 55% от первоначального периода. У коров, в отличие от других животных, в сосках обнаруживаются очень сложные и крупные чувствительные нервные окончания, очень похожие на окончания в руке человека. Поэтому кончик соска очень чувствителен. При физиологической норме сосковый канал после машинной дойки остается открытым в течение 30-40 мин, и наоборот, поврежденные соски и при мастите остаются частично открытыми на постоянной основе. В таблице представлено соотношение тканей вымени коровы.

Таблица – Соотношение тканей вымени коровы, %

	Масса вымени		
Ткань	большое вымя	среднее	маленькое
	(свыше 20 кг)	вымя	вымя
Интерстициальная ткань	13,2	13,0	12,9
Жировая ткань	8,1	8,2	7,9
Просветы альвеол	59,7	61,2	62,7
Межальвеолярная ткань	7,9	6,9	6,5
Паренхима железы:			
-количество альвеол на 3 мм ³ ;	122	143	152
-величина альвеол, мкм ³	16669	16041	14934

Основная «беда» молочной железы коровы – это неспособность противостоять инфекции по следующей причине: мало соединительной ткани, которая могла бы защитить вымя от инфекции, отсутствует заметная фагоцитарная способность эндотелиоцитов капилляров, в отличие от печени или селезенки, выводная система вымени сообщается с внешней средой – основным источником инфекции.

УДк 636.2.087.74

ВЛИЯНИЕ УСЛОВИЙ СОДЕРЖАНИЯ НА НЕКОТОРЫЕ ПОКАЗАТЕЛИ БЕЛКОВОГО, УГЛЕВОДНОГО И ЛИПИДНОГО ОБМЕНА В КРОВИ КРУПНОГО РОГАТОГО СКОТА

Мандрик К.А., Зубок Н.М., Лозовицкая Л.В.

УО «Гродненский государственный университет имени Я Купалы» г. Гродно, Республика Беларусь

Многие обменные патологии у животных имеют сезонную ритмику. Имеющиеся экспериментальные материалы по этой проблеме разрознены, отрывочны и зачастую противоречивы [1].

Целью данной работы являлась биохимическая характеристика крови двух пород крупного рогатого скота (Герефордской и черно-пестрой), наиболее распространенных в Республике Беларусь в конце стойлового периодов и во время пастбищно-выгульного содержания.

Достижения сформулированной выше цели планировалось путем решения следующей задачи: изучить в крови крупного рогатого скота Герефордской и черно-пестрой пород СПК «Бородичи» Зельвенского района Гродненской области показатели углеводного обмена в конце стойлового и выгульного периода содержания.

Предметом исследований явилось изучение биохимических показателей крови у животных в разные периоды содержания.

Установлено, что в летне-пастбищный период процессы углеводного обмена нормализуются, в то время как зимой они напряжены вследствие уменьшения запасов углеводов в организме [1]. На уровень пировиноградной кислоты в крови влияет сезон года. Наиболее высокий он был у коров в октябре, наименьший — в июле. Добавка микроэлементов в рацион снижает концентрацию пирувата в крови [1]. У коров черно-пестрой породы уровень пировиноградной кислоты в крови в стойловый период содержания в 1,5 раза превышал выгульный.

Содержание молочной кислоты в крови бычков Герефордской и коров черно-пестрой породы в стойловый и выгульный периоды содержания существенно не отличаются, но находятся выше среднестатистических данных примерно в 2 раза.

Повышение уровня лактата в крови указывает на нарушение углеводного обмена в организме животных.

Суммарное количество кетоновых тел в крови бычков и коров в зимний период содержания находилось на верхнем пределе среднестатистических данный и составляло 15,65±0,28 и 14,92±1,83 мг %. В пастбищный период оно снизилось до значения 9,43±1,12 и 5,31±0,71 мг % соответственно. Что касается составляющих компонентов кетоновых тел — β -оксимасляной кислоты и ацетон + ацетоуксусной кислоты, то их динамика также была направлена на снижение в выгульно-пастбищный период, особенно — β -оксимасляной кислоты, уровень которой упал в 2-3 раза.

Таким образом, анализ данных свидетельствует о том, что в зимний период содержания животных наблюдается некоторый кетоз, как результат несбалансированного по углеводам питания. Недостаточное потребление легкопереваримых углеводов увеличивает потребность в протеине. В результате этого из протеина в рубце коров образуется большое количество аммиака, азот которого микроорганизмы рубца полностью не могут усвоить. Этот азот с помощью α-кетоглутаровой кислоты переносится в печень, где позже образуется глутаминовая кислота. Недостаток α-кетоглутаровой кислоты нарушает цикл трикарбоновых кислот.

Существенным фактором, способствующим возникновению кетоза, является недостаток движения животных в стойловый период содержания. При движении коров уровень кетоновых тел в крови значительно снижается, они быстрее окисляются и используются на энергетические потребности организма.

Снижают процесс окисления кетоновых тел в организме коров недостаток кислорода в помещениях, избыточное содержание аммиака и углекислого газа.

Резюмируя полученные нами данные по показателям углеводного обмена в крови животных Герефордской и черно-пестрой пород в стойловый и выгульный периоды содержания, можно отметить, что уровень глюкозы находится в пределах среднестатистических данных и не меняется в зависимости от периода года. Количество кетоновых тел в зимне-стойловый период значительно выше по сравнению с выгульно-пастбищным. Эти показатели при переходе на свежие корма постепенно снижаются до уровня среднестатистических значений.

ЛИТЕРАТУРА

1. Таранов, М.Т. Биохимия и продуктивность животных/ М.Т. Таранов//. – М., 1976. – 240 с

УДК 619:616.84:619:615.3

ВЛИЯНИЕ АНТИБИОТИКОРЕЗИСТЕНТНЫХ ШТАММОВ СИНБИОТИЧЕСКИХ БАКТЕРИАЛЬНЫХ КУЛЬТУР НА ЕСТЕСТВЕННУЮ РЕЗИСТЕНТНОСТЬ И ИММУНОЛОГИЧЕСКУЮ РЕАКТИВНОСТЬ ЛАБОРАТОРНЫХ ЖИВОТНЫХ

Михалюк А.Н., Каврус М.А.

УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

Актуальность разработки экологически безопасных препаратов для ветеринарной практики особенно возросла в связи с запретом на использование антибиотиков в качестве кормовых добавок в Европейском Союзе, а также ужесточением требований к качеству мясной и молочной продукции в странах СНГ. Ограничение использования кормовых антибиотиков привело к увеличению потребности в препаратах пре- и пробиотиков, синбиотиков, фитобиотиков, подкислителей и др. для ветеринарии и животноводства. Важной задачей биотехнологии является разработка и выпуск конкурентоспособных препаратов, не уступающих по своим потребительским свойствам импортным аналогам, которые доминируют в настоящее время на рынке ветеринарных препаратов. Следует отметить, что использование пробиотиков и синбиотиков имеет актуальное значение не только для животноводства, но и для здравоохранения как огромный потенциал по снижению риска заболеваемости людей и средство повышения экологической безопасности и конкурентоспособности сельскохозяйственной продукции как по качеству, так и по цене [1, 2, 3].

Целью исследований явилось изучение влияния антибиотикорезистентных штаммов синбиотических бактериальных культур на естественную резистентность и иммунологическую реактивность лабораторных животных.

Исследования проводились в виварии факультета ветеринарной медицины, научно-исследовательской лаборатории УО «ГГАУ», кафедре микробиологии и эпизоотологии. Для изучения влияния синбиотических бактериальных культур на естественную резистентность и иммунологическую реактивность лабораторных животных по совокупности признаков были отобраны следую-