УДК 636.4.082.2

СЕЛЕКЦИЯ ПО МАРКЕРУ ВЫСОКОГО МНОГОПЛОДИЯ – ГЕ-ТЕРОЗИГОТНОМУ ГЕНОТИПУ АВ

Суслина Е. Н.

ФГБНУ «Всероссийский научно-исследовательский институт племенного дела»

г. Москва, Российская Федерация

Создание высокоспециализированных линий (типов) свиней, обладающих повышенными продуктивными и потребительскими качествами, в настоящее время невозможно без использования современных достижений в области генетики животных. Маркирование признаков на уровне генотипа в дополнение к традиционным классическим методам селекции позволяет значительно повысить эффективность селекционно-племенной работы и достичь желаемого результата уже в течение нескольких генераций [1, 2].

На свинокомплексе ООО «АБСОЛЮТ-АГРО» Кировской области с 2006 г. проводится работа по созданию специализированного материнского типа породы йоркшир, завезенной из Канады. Для ускорения темпов селекции при создании материнского специализированного типа «Абсолют» в качестве дополнительных оценочных критериев при раннем отборе и подборе родительских пар проводились исследования по выявлению генетического маркера по основному селекционируемому признаку — многоплодие. Для определения ДНК маркера по многоплодию была проведена диагностика свинок и хрячков родительского поколения в возрасте 5 месяцев в количестве 50 свинок и 12 хрячков, у которых ПЦР-анализом был выявлен полиморфизм генов ESR и RYR-1. Аттестация проводилась в лаборатории молекулярной генетики и цитогенетики ФГБНУ ВНИИплем.

Исследования генетической структуры свинок и хрячков по гену эстрогенового рецептора (ESR) показали, что частота встречаемости генотипов составила: по свинкам – AB – 20%, AA – 42%, BB – 38%; по хрячкам – AB – 33%, AA – 42%, BB – 25%. Генотипирование свинок на наличие мутантного аллеля «п» гена RYR-1 показало, что все свинки стрессустойчивые (имеют генотип «NN»). Из 12 хрячков 2 имели гетерозиготный генотип «Nn», остальные 10 хрячков имели по гену RYR-1 гомозиготный генотип «NN».

Анализ воспроизводительных качеств свиней родительского поколения (00) (табл. 1) выводимого типа «Абсолют» разных генотипов показал,

что самым высоким многоплодием отличались свиноматки с гетерозиготным генотипом AB-15.1 голов.

Таблица 1 — Воспроизводительные качества свиней родительского поколения (F_0) выводимого типа «Абсолют» разных генотипов ***P<0.001

Генотип генов	% гено- типов	Многопло- дие, гол.	В 30 дней			
			голов	живая масса, кг	масса 1 по- росенка	
AB	20	15,1±0,6***	11,5±0,4***	104,6±3,6***	9,1±0,2***	
AA	42	10,5±0,4	9,9±0,3	89,7±3,5	8,6±0,1	
BB	38	12,7±0,6***	11,0±0,3***	96,2±3,8	8,7±0,2	
В среднем	100	12,8±0,3	10,8±0,1	96,8±2,1	8,8±0,1	

Воспроизводительные качества свиноматок с гетерозиготным генотипом AB превышали воспроизводительные качества свиноматок с гомозиготным генотипом AA: многоплодие на 4,6 поросенка (P<0,001), количество голов и живая масса гнезда при отъеме в 30 дней, соответственно на 1,6 гол. (P<0,001) и 14,9 кг (P<0,001); с гомозиготным генотипом BB: многоплодие на 2,4 гол. (P<0,001), количество голов и живая масса гнезда при отъеме на 0,5 гол. (P<0,001) и 8,4 кг (P<0,001).

Свиноматки с генотипом АА имели многоплодие, количество поросят и живую массу гнезда при отъеме в 30 дней соответственно на 2,2 гол. (P<0,001), 1,1 гол. (P<0,001) и на 6,5 кг (P<0,001) меньше, чем свиноматки с генотипом ВВ. При гомогенном подборе хряков и свиноматок наиболее низкую продуктивность, как указано в таблице 1, имели свиноматки и хряки с генотипом АА, а самую высокую – свиноматки и хряки с гетерозиготным генотипом АВ.

Целенаправленный отбор по воспроизводительным признакам, высокое селекционное давление на свиноматок – 50%, на хряков – 90% по основному селекционируемому признаку – многоплодие и внутрилинейный гомогенный подбор по генотипу АВ (желательный) позволили за 6 лет селекционного процесса получить третье поколение свиноматок и хряков создаваемого типа «Абсолют» породы йоркшир (табл. 2).

В третьем поколении основной селекционируемый признак – многоплодие, по сравнению с многоплодием родительского поколения, увеличился на 0,5 поросенка (P<0,001). Процент встречаемости генотипа AB в третьем поколении увеличился на 15%, количество свиноматок с генотипом BB увеличилось на 7%, а число свиноматок с генотипом AA уменьшилось почти вдвое.

Таблица 2 – Воспроизводительная продуктивность свиноматок ***P<0,001

100	-o-	o o o o o o	0 H G	В 30 дней	н	NIT OT H	ор од н
r `		1 0 1	7 7 7 7	- * * //			.

			голов	живая масса гнезда, кг	масса 1 по- росен- ка			
F_0	885	11,9± 0,16	10,5± 0,10	89,0± 1,10	8,5± 0,07	90,0	-	-
F ₁	985	12,2± 0,12	10,7± 0,06	96,2± 0,75	8,9± 0,05	89,0	54,0	67,0
F_2	895	12,3± 0,21	11,2± 0,11	100,6± 1,34	9,2± 0,08	91,8	57,0	71,0
F ₃	768	12,4± 0,36***	11,6± 0,30***	104,6± 2,95***	9,5± 0,22	93,5	66,0	76,0

Таким образом, диагностика свиноматок и хряков родительского поколения типа «Абсолют» по гену плодовитости ESR позволила выявить маркер высокого многоплодия в стаде породы йоркшир – гетерозиготный генотип AB.

ЛИТЕРАТУРА

- 1. Зиновьева Н. А. Оценка животных по генетическим маркерам / Зиновьева Н. А., Шавырина К. М., Адаменко В. А., Енин Ю. М., Гуденко Н. Д. // Промышленное и племенное свиноводство. -2005. -№ 2. -C. 18-20.
- 2. Kalashnikova L.A. Poligenic character of determination of reproductive traits of Belarus Meattype pig breed / Kalashnikova L.A., Epishko O.A., Epishko T.I. // Russian Agricultural Science. 2009. V.5. №2. P.118-120.

УДК 639.371.52(476.1)

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ВЫРАЩИВАНИЯ КАР-ПА В ПОЛИКУЛЬТУРЕ

Сытько Е. С.

УО «Гродненский государственный аграрный университет»

г. Гродно, Республика Беларусь

Основным объектом товарного рыбоводства в Республике Беларусь является карп. Рост цен на концентрированные корма, удобрения, энергоресурсы и другие материалы приводит к повышению себестоимости выращиваемой рыбы, что делает этот продукт питания неконкурентоспособным по сравнению с морской рыбой. В структуре себестоимости выращивания карпа по интенсивной технологии концентрированные корма составляют свыше 50%. Поэтому важно искать пути снижения их затрат на производство рыбы.

Одним из способов снижения себестоимости выращивания, а следовательно, и цены реализации рыбной продукции является поликультура прудовых рыб, позволяющая более полно использовать естественную