ФОТОСИНТЕТИЧЕСКИЙ ПОТЕНЦИАЛ ПОСЕВА СОРТООБРАЗЦОВ ЯРОВОЙ ТВЕРДОЙ ПШЕНИЦЫ БЕЛОРУССКОЙ СЕЛЕКПИИ

Курчевская О.С., Костицкая Е.В., Дуктова Н.А.

УО «Белорусская государственная сельскохозяйственная академия» г. Горки, Республика Беларусь

Важным условием высокой продуктивности посевов является поглощение растениями возможно большего количества энергии солнечной радиации и преобразование ее в органическое вещество. Повышение урожайности сельскохозяйственных культур отмечается в том случае, если обеспечиваются следующие условия: 1) быстрое развитие и достижение оптимальной площади листьев; 2) повышение продуктивности фотосинтеза; 3) сохранение листьев в активном состоянии возможно более длительный период времени; 4) эффективное использование продуктов фотосинтеза для усиленного роста хозяйственно-ценных органов растения и накопление в них, возможно, большего количества органического вещества.

Продуктивность фотосинтеза растений определяется двумя главными показателями: суммарной площадью листьев (ассимилирующей поверхностью) и интенсивностью фотосинтетических процессов на единице площади листьев. От того как протекает фотосинтез, зависят рост и развитие растений, их урожайность. В связи с этим основной целью нашей работы являлось определение параметров фотосинтеза у изучаемых сортообразцов. В наибольшей степени продуктивность посевов определяется длительностью функционирования фотосинтезирующих органов растения, которую отражает фотосинтетический потенциал посева (ФП). Он характеризует величину и скорость нарастания или убывания фотосинтезирующей поверхности и продолжительности ее работы. В отличие от показателя площади листьев отдельного растения и чистой продуктивности фотосинтеза, фотосинтетический потенциал является интегральным показателям, который характеризует фотосинтетическую деятельность посева и напрямую определяет урожайность.

Полевые опыты проводились на опытном поле УО «БГСХА» Горецкого района Могилевской области. В качестве объектов исследований выступали сортообразцы яровой твердой пшеницы, различающиеся по скороспелости и габитусу, созданные в УО «БГСХА». Изучение новых образцов пшеницы осуществлялось в питомнике конкурсного сортоиспытания. Посев выполнялся сеялкой *Hege 80*. Площадь делянки 10 м² в 6-ти повторностях. Уборка проводилась селекционным комбай-

ном Sampo. ФП определялся по фазам развития, как произведение полусуммы площади листьев за каждые два смежных определения на длительность периода между этими определениями в днях.

Величина $\Phi\Pi$ была наибольшей в фазу цветения — 519,3 тыс.·м²/га. У раннеспелых сортообразцов суммарный за период $\Phi\Pi$ был на 260-380 тыс. м²/га ниже, нежели среднеспелых. В то время как у позднеспелых сортообразцов он на 280-647 тыс. м²/га превышал среднеспелые формы. В целом ранжирование величины $\Phi\Pi$ по сортообразцам определило и их суммарную урожайность.

Для определения взаимосвязи фотосинтетических параметров нами был проведен корреляционный анализ признаков.

В результате анализа установлено, что ФП тесно коррелирует со всеми анализируемыми фотосинтетическими параметрами (r=0,69...0,74). Чистая продуктивность фотосинтеза в наибольшей степени определяется площадью листьев как самого растения (0,62), так и их суммарной площадью в посеве (индекс листовой поверхности) (0,60). В свою очередь между последними показателями наблюдается прямая линейная связь (1,00).

Однако значительно больший интерес представляет взаимосвязь фотосинтетических параметров с урожайностью и элементами её составляющими.

 $\Phi\Pi$ посева тесно коррелирует с продуктивностью растений (0,56...0,83). Известно, что общая урожайность с единицы площади имеет обратную корреляцию с показателями качества зерна. Нами также установлено, что повышение фотосинтетических параметров (ИЛП, $\Phi\Pi$ и ЧП Φ) обуславливает повышение массы семян с растения (0,70, 0,56 и 0,72 соответственно), на фоне снижения их крупности. Наиболее тесная связь массы 1000 семян наблюдается с показателем чистой продуктивности растения (r= - 0,91), то есть, чем меньше зерен формируется на растении, тем они крупнее.

Принимая во внимание связь ФП с урожайностью (0,83), при индивидуальном отборе в селекции пшеницы твердой следует уделять внимание хорошо облиственным формам, имеющим развитые, крупные листья. Показатель чистой продуктивности фотосинтеза больше связан с продуктивностью индивидуального растения (0,72) и имеет весьма слабый вклад в общую урожайность (0,33), что свидетельствует о нецелесообразности использования его в качестве критерия отбора в селекции на урожайность.