жайность по данной дозе составила 68,7 т/га, прибавка к фоновой дозе 17,0 т/га, а при орошении 78,1 и 16,9 т/га соответственно.

Выявлено, что применение орошения способствовало повышению урожайности корнеплодов свеклы столовой на 6,9-9,3 т/га, а корнеплодов моркови на 9,4-12,5 т/га.

Применение микроэлементов при проведении некорневых подкормок обеспечило повышение в корнеплодах свеклы столовой содержания сухого вещества на 0.5-0.7% и суммы сахаров на 0.4-0.6%, а в корнеплодах моркови столовой данный агроприем повысил содержание сухого вещества на 0.4-1.1%, суммы сахаров на 0.2-0.6% и 0.4-каротина на 0.5-0.4 мг%.

Таким образом, установлено, что наиболее эффективное влияние на урожайность и качество столовых корнеплодов оказывает использование некорневых подкормок микроэлементами в виде наночастиц и в хелатной форме по сравнению с применением простых солей данных элементов.

ЛИТЕРАТУРА

- 1. Булигін, С.Ю. Мікроелементи в сільскому господарстві / С.Ю. Булигін та ін. $3-\varepsilon$ вид. доповнене, Д., Січ, 2007.-100 с.
- 2. Глазко, В.И. Направления использования нанотехнологий в сельском хозяйстве / В.И. Глазко // «Овощи России» 2008. № 1-2, С 30-33
- 3. Дятлова, Н.М. Комплексоны и комплексонаты металлов / Н.М. Дятлова, В.Я. Темкина, К.И. Попов. М. Химия. 1988. 544 с.
- 4. Степуро, М.Ф. Удобрение и орошение овощных культур / М.Ф. Степуро Минск, 2008. 239 с.

УДК 631.14:631.82:631.559:631.445.24

ВЛИЯНИЕ НОРМ И СРОКОВ ВНЕСЕНИЯ АЗОТНЫХ УДОБРЕНИЙ И РЕТАРДАНТОВ НА УРОЖАЙНОСТЬ ОЗИМОЙ РЖИ

Бирюкович Т.В.

РУП «Научно-практический центр НАН Беларуси по земледелию» г. Жодино, Республика Беларусь

Внедрение в сельскохозяйственное производство сортов озимой ржи интенсивного типа требует совершенствования технологии их возделывания. Это в первую очередь касается уточнения норм и сроков внесения азотных удобрений и ретардантов, влияющих на сохранение потенциальной продуктивности сортов и их технологические качества зерна.

Цель исследований состояла в изучении норм, сроков внесения азотных удобрений и ретардантов на урожай сорта озимой тетраплоидной ржи Белая Вежа.

Схема опыта включала 7 вариантов, вариант № $1-P_{60}K_{90}+N_{90}$ (ДК 25) являлся базовым. Предшественник — занятый пар (крестоцветные). Норма высева — 5,0 млн. всхожих семян на 1 га. Осенью в основную обработку вносили минеральные удобрения: $P_2O_5 - 60$ кг д.в./га, $K_2O - 90$ кг д.в./га, а также проводили химическую прополку гербицидом Кугар 1 л /га. Семена протравлены фунгицидом Кинто Дуо — 2,5 л/т. На всех вариантах опыта в фазу флаг-листа проводилась обработка фунгицидом Альто Супер в дозе 0,4 л/га против листовых болезней.

Азотные подкормки мочевиной проводили в три срока: при возобновлении активной весенней вегетации (ДК 25), в фазу начало трубкования (ДК 31-32) и в фазу флаг-листа (ДК 37-39). Ретардант ХМХ, 750 в дозе 1,25 л/га вносили в фазу начала выхода в трубку (ДК 31-32). На вариантах с общей дозой азота 120 кг д.в./га (варианты № 6 и 7) в фазу флаг-листа дополнительно вносили ретардант Серон 0,5 л/га.

Из урожайных данных, представленных в табл., видно, что дробное внесение мочевины в дозе $N_{60}+N_{30}$ положительно сказалось на урожайности и обеспечило прибавку по отношению к разовому внесению 2,2 ц/га. Сравнивая применение азота в дозе N_{120} в два и три приема можно сделать вывод, что 2-кратное применение (вариант № 6) оказалось несколько эффективнее (+0,9 ц/га) по отношению к 3-кратному (вариант № 7).

Таблица 1 — Урожайность озимой тетраплоидной ржи сорта Белая Вежа, 2011-2013 гг.

$N_{\underline{0}}$	Варианты	2011	2012	2013	среднее
1	$P_{60}K_{90}+ N_{90}$ (ДК 25)	53,4	56,6	48,5	52,8
2	P ₆₀ K ₉₀ + N ₉₀ (ДК 25)+ретардант (ДК 31-32)	55,0	57,6	50,0	54,2
3	$P_{60}K_{90}$ + N_{60} (ДК 25) + N_{30} (ДК 31-32)	55,5	58,8	50,8	55,0
4	P_{60} К ₉₀ + N ₆₀ (ДК 25) + N ₃₀ (ДК 31-32)+	56,3	59,5	51,6	55.0
4	ретардант (ДК 31-32)	30,3	39,3	31,0	55,8
5	P_{60} К ₉₀ + N_{90} (ДК 25) + N_{30} (ДК 31-32)+ ретардант (ДК 31-32)	57,3	60,4	52,4	56,6
6	P_{60} К ₉₀ + N ₉₀ (ДК 25)+ N ₃₀ (ДК 31-32) + ретардант (ДК 31-32) + ретардант (ДК 37-39)	58,8	62,6	54,5	58,8
	P_{60} К ₉₀ + N ₆₀ (ДК 25) + N ₃₀ (ДК 31-32) + N ₃₀ (ДК 37-39) + ретардант (ДК 31-32)+				
7	ретардант (ДК 37-39)	58,2	61,4	53,7	57,8
	HCP ₀₅	1,8	1,9	1,7	

Известно, что одним из недостатков озимой ржи является ее склонность к полеганию. Наиболее эффективным методом борьбы с полеганием является применение ретардантов. Применение ретарданта

XMX, 750 в дозе 1,25 л/га на фоне N_{90} разово, увеличило урожайность на 1,6 ц/га, а на фоне N_{90} дробно – всего на 0,8 ц/га. Анализируя эффект действия ретардантов на фоне N_{120} (варианты № 5-7), пришли к выводу, что дополнительное внесение Серона в фазу флаг-листа положительно сказалось на урожайности и на устойчивости к полеганию. Так, наивысшая урожайность (58,8 ц/га) получена на варианте № 6 от внесения N_{120} в два приема $N_{90} + N_{30}$ с двукратной обработкой ретардантами – выше на 6,0 ц/га по отношению к базовому варианту № 1 и на 2,2 ц/га по отношению к варианту № 5, где ретардант применяли однократно.

При определении биометрических показателей растений озимой ржи было выяснено, что прибавка урожая зерна при дополнительном внесении N_{30} была сформирована за счет увеличения плотности продуктивного стеблестоя.

УДК631.527.52:633.14 «324»(476)

К СЕЛЕКЦИИ ОЗИМОЙ РЖИ НА ГЕТЕРОЗИС

Бирюкович Т.В., Артюх Д.Ю.

РУП «Научно-практический центр НАН Беларуси по земледелию» г. Жодино, Республика Беларусь

Создание гетерозисных гибридов F_1 озимой ржи основано в первую очередь на использовании в качестве родительских компонентов самофертильных линий, которые позволяют оценивать растения по потомству, выделять и сохранять ценные генотипы, накапливать гены ценных хозяйственных признаков (продуктивности, устойчивости к болезням и др.) путем самоопыления. Кроме использования самоопыленных линий, получение гетерозисных гибридов F_1 требует наличия различных генетических систем ЦМС. Актуальной проблемой при этом является подбор родительских компонентов по восстанавливающей и закрепляющей способности и по степени их генетической дивергентности.

Целью настоящих исследований явилосьподбор и изучение родительских компонентов (МС- и ЗС-формы) новых комбинаций систем ЦМС в селекции на гетерозис.

Для поддержания и размножения самоопыленных линий (I_{1-3}) как восстановителей фертильности в системе ЦМС в полевых условиях под урожай 2013 г. был заложен питомник микроиспытания (по типу контрольного питомника, площадь делянки 1 м²), включающий 226 инцухт-линии.