ного глазка» у трехпородного сочетания (КБхБМ)хЛ до $36,8~{\rm cm}^2$. Чистопородные подсвинки породы ландрас отличались высокими показателями мясных признаков: длина туши составила $101,3~{\rm cm}$, толщина шпика $-24,8~{\rm mm}$, масса окорока $-11,3~{\rm kr}$, площадь «мышечного глазка» $-35,3~{\rm cm}^2$, выход мяса в туше -62,4%.

Таким образом, на основании вышеизложенного можно сделать вывод о том, что использование хряков мясных пород – белорусской мясной, дюрок и ландрас – в различных вариантах скрещивания с матками отечественных и зарубежных пород в определенной степени решает задачу увеличения производства конкурентоспособной свинины.

ЛИТЕРАТУРА

- 1. Республиканская программа по племенному делу в животноводстве на 2011–2015 годы. Утверждена постановлением Совета Министров Республики Беларусь 31.12,2010 № 1917 [Электронный ресурс]. Режим доступа http://pravo.levonevsky.org/bazaby11/republic03/text362.htm Дата доступа: 15.04.2014.
- 2. Танана, Л.А., Гришанова, О.В., Зайцева, Н.Б. Хозяйственно-полезные качества свиней различных генотипов // «Сельское хозяйство проблемы и перспективы»: сб. науч. тр.: Т1 / под ред. В.К. Пестиса. Гродно: ГГАУ, 2010. 220-228 с.
- 3. Шейко, И.П. Задачи научного обеспечения развития животноводства Беларуси // Зоотехническая наука Беларуси / Сб. науч. тр. РУП «Институт животноводства НАН Беларуси». Науч. ред. И.П. Шейко. Мн.: УП «Технопринт», 2003. Т.38. 3-10 с.

УДК 636.2.085:633.63

РАЦИОНЫ С СУХИМ ЖОМОМ В КОРМЛЕНИИ ЛОЙНЫХ КОРОВ

В.Г. Гурский, В.Н. Сурмач

УО «Гродненский государственный аграрный университет», г. Гродно, Республика Беларусь

(Поступила в редакцию 25.06.2014 г)

Аннотация. В опыте изучали влияние ввода сухого свекловичного жома в комбикорма (20%) для дойных коров на показатели рубцового пищеварения и молочную продуктивность.

Summary. The experiment studied the effect of dry beet pulp input to the feed (20%) for dairy cows on the performance of rumen digestion and milk production.

Введение. Создание качественной кормовой базы является одной из наиболее актуальных проблем скотоводства. Для этого следует использовать не только традиционные корма, но и более широко применять корма, получаемые при переработке технических культур, например, такие как сухой свекловичный жом, картофельная мезга, меласса, барда, рапсовый жмых и др [1].

Сухой жом — продукт с большим содержанием гемоцеллюлозы, отличается высокой усвояемостью сухих веществ (до 94-96%), а по обменной энергии ему нет равных (11,5 МДж), с медленным освобождением энергии в рубце, нормализующим активную кислотность рубца. Он хорошо сочетается с основными хозяйственными кормами. Питательная ценность его выше некоторых зерновых кормов. На фермах стран Евросоюза сухой жом является важным и традиционным кормовым ингредиентом в производстве комбикормов. Норма ввода его в комбикорма составляет 15% и более. Сухой жом в отличие от зерновых не ухудшает поедаемости рациона. [3, 4, 5].

В Республике Беларусь ежегодно сахарными заводами производится около 63 тыс. т сухого свекловичного жома. Но этот продукт практически не используется в комбикормовой промышленности нашей страны, а идет на выполнение прогнозных показателей по экспортным поставкам в европейские страны. Одной из причин является отсутствие научнообоснованных норм ввода сухого жома в комбикорма для животных в условиях РБ [2].

В ранее проведенных исследованиях мы установили оптимальную норму ввода сухого свекловичного жома в комбикорма для дойных коров, которая составляет 20% по массе комбикорма, при условии сбалансированности его по протеину.

Цель работы – провести производственную проверку норм ввода сухого свекловичного жома (20%) в комбикорма для дойных коров.

Материал и методика исследований. Опыт по использованию сухого жома в летнем рационе дойных коров проводился в филиале «Скиделький» ОАО «Агрокомбинат «Скидельский» Гродненского района на МТФ «Песчанка» по схеме, представленной в таблице 1.

Таблица	– Схема опыта

Группы	Количество животных в группе, гол.	Особенности кормления	
	Продолжительность опыта 92 дня.		
І-контрольная	70	Основной рацион + стандартный комбикорм К-60	
II-опытная	70	Основной рацион + испытуемый комбикорм с сухим свекловичным жомом (20% по массе)	

Для опыта было отобрано 140 голов коров черно-пестрой породы, со средней продуктивностью за последнюю лактацию 4900 кг и выше, на 2-4 месяцах лактации. Животные были распределены в две группы: контрольную и опытную по 70 голов. Контрольная группа получала стандартный комбикорм К-60, производства ОАО «Гроднохлебопродукт», опытная – комбикорм с 20% сухого жома.

Структура хозяйственного рациона кормления дойных коров была следующая: сенаж злаковый -30,2%, силос кукурузный -36,4%, сено разнотравное -4,4%, комбикорм -22,6%, патока -4,1% и жмых рапсовый -2,3% (от общей питательности рациона).

Рацион соответствовал нормам кормления коров и обеспечивал животных во всех питательных веществах. Животных кормили кормосмесью три раза в сутки (утром перед доением, в обед и вечером). Содержание коров беспривязное, боксовое, в секциях по 70 голов, с доением в доильном зале.

Для производства комбикорма был использован сухой свекловичный жом производства ОАО "Скидельский сахарный завод", рапсовый жмых производства СЗАО «ГродноБиопродукт». Состав комбикормов представлен в таблице 2.

Таблица 2 – Рецепты комбикормов, %

Показатель	Состав комб	Состав комбикормов, %		
	I контрольная	II-опытная		
1	2	3		
Тритикале	40	28.0		
Сухой жом		20		
Кукуруза	15,2	11,2		
Пшеница	23	17		
Жмых рапсовый	16	18		

Продолжение таблицы 2

1	2	3
Мел	1,3	1,3
Соль	1	1
Меласса	1,5	1,5
Монокальцийфосфат	0,8	0,8
Премикс П60-2	1,2	1,2
В 1кг ко	омбикорма содержится:	
кормовых единиц	1,12	1,06
обменной энергии, Мдж	10,74	10,51
сырого протеина, %	16,38	16,26
сухого вещества, г	836,67	833,67
крахмала ,г	360,12	251,86
сахара, г	15,58	13,35
сырого жира, г	32,39	29,78
сырой клетчатки, %	4,87	7,90
Са, г	1,55	1,48
Р, г	2,8	2,05
Мg, мг	0,86	0,69
К, мг	1,10	1,91
Ѕ,мг	0,28	0,63
Fe. Mг	237,30	298,10
Cu. Mr	17,22	19,19

Zn. Mr	99,87	98,56
Мп, мг	75,41	84,14
Со, мг	1,29	1,34
I, мг	0,93	1,25
каротина, мг	0,97	0,68
Е, мг	71,32	64,24

Данные таблицы 2 показывают, что комбикорма соответствовали нормам классификатора кормов для дойных коров. Различия по химическому составу были незначительными. Можно отметить несколько большее содержания клетчатки в опытном комбикорме на 3,0%, железа на 60,8 мг и незначительное снижение сырого протеина на 0,7% за счет ввода сухого жома.

В научно-хозяйственном опыте изучали:

- > зоотехнический анализ кормов по общепринятым методикам;
- динамику молочной продуктивности коров путем индивидуальных контрольных доек один раз в десять дней;
- химический состав молока путем отбора средних проб молока;
- биохимические показатели крови;
- ▶ показатели рН на рН-метре;
- ▶ общую концентрацию летучих жирных кислот (ЛЖК) в аппарате Маркгама;
- ▶ концентрацию ЛЖК с помощью газового хромотографа ICS-3000;
- общий азот и небелковый в жидкости рубца используя метод Кельдаля;
- аммиака микродиффузионным методом.

Результаты, полученные в ходе опыта, статистически обработаны методом достоверности количественных различий результатов исследований.

Результаты исследований и их обсуждение. Данные, полученные в опытах по скармливанию дойным коровам стандартного и испытуемого комбикорма, оказали разное влияние на ферментативные процессы и соотношение продуктов метаболизма в рубце (табл. 3).

Таблица 3 — Азотистые фракции, ЛЖК, pH рубцовой жидкости дойных коров через 3 часа после кормления

Показатель	Группа		
	I контрольная	II опытная	
Общий азот, мг %	81,2±0,60	86,2±0,20	
Белковый азот, мг%	49,4±0,18	66,0±0,34	
Аммиачный азот, мг%	10,50±0,08	7,6±0,06	
Аминный азот, мг%	31,8±0,39	20.2±0,15	
ЛЖК, мМоль/100 мл	13,33±0,08	11,38±0,01	

рН	6,13±0,04	6,27±0,03
С2 (уксусная)	56,4±0,20	59,8±0,20
С ₃ (пропионовая)	26,7±0,08	23,7±0,29
С ₄ (масляная)	16,9±0,21	16,5±0,28

Из данных таблицы 3 видно, что содержание количества летучих жирных кислот в рубцовой жидкости коров опытных групп было ниже на 14,6%. Снижение уровня ЛЖК в рубце коров опытной группы в период наиболее интенсивной ферментации (3-5 часов после кормления) объясняется, по-видимому, более низким уровнем легкопереваримых углеводов корма – крахмала в их комбикорме.

Скармливание сухого свекловичного жома оказало заметное влияние на структуру ЛЖК в рубце коров. С увеличением уровня сухого жома в комбикормах опытных коров наблюдается снижение количества пропионовой кислоты (C_3) на 11,2% и увеличение количества уксусной (C_2) на 6.0%.

Также следует отметить, что в содержимом рубца опытных коров содержание аммиачного азота было ниже на 11,6 мг%, чем в содержимом рубца контрольной группы.

Использование сухого жома в составе комбикорма оказало влияние на содержание общего азота и аммиачного азота. Так, в содержимом рубца I контрольной группы общего азота содержалось 81,2 мг %, в то время как во II группе его было больше на 5,0 мг %. Количество белкового азота в рубце коров контрольной группе было ниже, чем в опытной группе на 33,6%, а небелкового азота выше на 27,6%.

Введение сухого жома в комбикорма опытной группы коров оказало определенное влияние на состояние обмена веществ в их организме (табл. 4).

Таблица 4 – Биохимические показатели крови

Показатели	Группы		
	I контрольная	II опытная	
Общий белок, г/л	76,2	78,5	
Кальций, мкмоль/л	2,7	3,1	
Фосфор, мкмоль /л	1,0	0,9	
Железо, мкмоль/л	24,7	24,3	
Магний, мкмоль /л	0,87	0,89	
Глюкоза, мкмоль /л	2,76	2,75	
Холестерин, мкмоль /л	3,61	3,06	
Билирубин, мкмоль/л	4,23	4,53	
Мочевина, мкмоль /л	2,98	3,36	
Креатинин, мкмоль/л	98,25	110,75	

Как видно из таблицы 4, все биохимические показатели крови у подопытных животных находились в пределах физиологической нормы. Можно отметить только некоторую тенденцию к увеличению содержания общего белка на 3%, билирубина (на 0,3 мкмоль/л) и концентрации креатинина в крови коров опытной группы.

Использование в составе летних рационов комбикормов с сухим свекловичным жомом позволило повысить их продуктивность (табл. 5).

Таблица 5 – Продуктивность коров за весь период опыта

Показатели	Группы		
Показатели	I контрольная	II опытная	
Среднесуточный удой на 1 корову, кг	17,4±0,82	17,7±0,64	
Валовой надой молока за опыт	1120.6	1120.0	
на 1 корову, кг	1120,6	1139,9	
Содержание (%):			
жира	3,43±0,12	3,58±0,13	
белка	3,17±0,03	3,18±0,02	

За три месяца производственной проверки в группе коров, получавших комбикорм с содержанием 20% сухого жома, валовой надой молока составил 1139,9 ц, а у контрольных животных — 1120,6 ц или на 1,7% больше. В молоке коров опытной группы и жирность надоенного молока была выше на 0,15%.

По результатам производственной проверки были проведены расчеты экономической эффективности использования сухого свекловичного жома в рационах дойных коров. Полученные данные представлены в таблице 6.

Таблица 6 – Эффективность использования сухого жома в рационах дойных коров

денивит керев		
Показатели	І-контрольная	ІІ-опытная
Надоено молока базисной жирности, ц	1067,7	1133,6
Дополнительная продукция базисной жирности, ц	-	65,9
Средняя реализационная цена 1 ц молока, тыс. руб.	277	277
Стоимость реализованной продукции, тыс. руб.	295753	314007
Стоимость дополнительной продукции, тыс. руб.	-	18254
Расход концентратов на 1 кг молока, г	300	300
Затраты корма на 1 кг молока, к. ед.	1,18	1,01
Общехозяйственные расходы на производство моло-	213540	225586
ка, тыс. руб.		
Себестоимость 1 ц молока, тыс. руб.	200	199
Прибыль от реализации молока, тыс. руб.	82413	88421
Уровень рентабельности, %	38.5	39.2

Из таблицы 6 видно, что использование в составе рациона испытуемого комбикорма дает возможность получить дополнительно молока на сумму 18254 тыс. руб. и прибыли на 5140 тыс. руб.

Но при этом увеличивает общехозяйственные расходы на 5,6% (сто-имость испытуемого комбикорма была выше, чем стандартного). Поэтому

уровень рентабельности производства молока в подопытных группах был практически одинаковым (38,5% в контрольной и 39,2% в опытной).

Заключение. Следовательно, скармливание сухого свекловичного жома в составе комбикормов для дойных коров оказывает положительное влияние на процессы пищеварения и обмена веществ в рубце и продуктивность. В рубце коров, получавших жом, стабилизируется кислотность (рН), а в структуре ЛЖК увеличивается количество уксусной на 6,0%, синтез микробного белка на 33,6%, продуктивность на 1,7%, и не снижается уровень рентабельности производства молока в хозяйстве.

ЛИТЕРАТУРА

- 1. Лапотко, А.М. Производству комбикормов новые ориентиры / А.М. Лапотко, А.Л. Зиновенко // Белорусское сельское хозяйство: ежемесячный научно-практический журнал. 2008. № 11.-27-31 с.
- 2. Лобас, Т. Предприятия сахарной отрасли Беларуси готовы к переработке сахарной свеклы нового урожая / Т. Лобас // БЕЛТА [Электронный ресурс]. 2009. Режим доступа: http://www.21.by/news_?id=436056 Дата доступа: 02.02.2010.
- 3. Мирошниченко, В.А. Эффективность использования заменителей зерна в комбикормах при выращивании ремонтных телок: Молочно-мясное скотоводство, 1989; Т. 75. 60-63 с.
- 4. Хотмирова, О.В. Процессы пищеварения у коров при разном уровне клетчатки в рационе / Харитонов Е.Л., Хотмирова О.В. / Актуальные проблемы заготовки, хранения и рационального использования кормов. Мат межд. научно-практ. конф. Посвященной 100-летию д.б.н., профессора С.Я. Зафрена, М.:ФГУ РЦСК 2009. 181-189 с.
- 5. Чепелев, Н.А. Использование свекловичного жома в рационах дойных коров / Н.А. Чепелев, А.А. Зорикова, О.Н. Егоречева // Наука и инновации в сельском хозяйстве, Ч.3 Курск: Курская государственная сельскохозяйственная академия, 2011. 32-34 с.

УДК 636.2.034.636.087.7

ТРАНСДУКЦИЯ КАЛЬЦИЯ В СПЕРМАТОЗОИДАХ БЫКОВ ПРИ АКРОСОМНОЙ РЕАКЦИИ ПОСЛЕ ВОЗДЕЙСТВИЯ ПРОЛАКТИНА И ГТФ

В.Ю. Денисенко, Е.Н. Бойцева, Т.И. Кузьмина

ГНУ Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных,

г. Санкт-Петербург-Пушкин, Россия

(Поступила в редакцию 08.07.2014 г.)

Аннотация. Для оценки колебаний внутриклеточного кальция сперматозоидов быков на спектрофлуориметре после воздействия ГТФ и пролактина использовали флуоресцентный зонд хлортетрациклин (ХТЦ). Было доказано, что совместное действие ГТФ и пролактина вызывает дополнительную мобилизацию кальция
из внутриклеточнох депо (ВД) спермиев. Эксперименты с применением специфического ингибитора $Ca^2+AT\Phi$ азы тапсигаргина, мобилизующего кальций из IP_3 чувствительных ВД, продемонстрировали, что пролактин воздействует на IP_3 -