Таблица — Засоренность кукурузы доминирующими видами сорных растений после проведения защитных мероприятий (маршрутные обследования, РУП «Институт защиты растений», 2016-2020 гг.)

Сорное расте-	Количество сорняков в годы обследований, шт./м ²					
ние	2016 г.	2017 г.	2018 г.	2019 г.	2020 г.	среднее
Просо куриное	6,1	7,1	14,0	15,1	14,6	11,4
Марь белая	8,2	3,1	11,4	5,2	3,4	6,3
Пырей ползучий	2,6	6,1	2,7	1,6	2,2	3,0
Виды горца	2,9	3,2	4,7	2,8	3,3	4,3
Фиалка полевая	3,5	3,6	1,7	2,7	4,6	3,2
Виды осота	0,6	1,5	2,2	1,1	0,5	1,2
Трехреберник непахучий	0,7	0,1	0,1	0,3	0,5	0,3
Паслен черный	3,5	2,5	6,5	3,6	4,2	4,1
Всех сорняков	37,2	36,5	52,6	42,5	44,7	42,7

Изучение фитосанитарной ситуации показало обострение проблемы засорения посевов кукурузы пасленом черным (Solanum nigrum L.). Паслен черный — поздний яровой сорняк, его всходы могут появляться после проведения основных обработок, т. е. после фазы 5 листьев культуры. Численность его выше при выращивании в монокультуре, поэтому при высокой численности в посевах паслена черного целесообразно возделывать кукурузу в севообороте.

ЛИТЕРАТУРА

1. Инструкция по определению засоренности полей, многолетних насаждений, культурных сенокосов и пастбищ / подгот. Л. М. Державин [и др.]. – М.: Агропромиздат, 1986. – 16 с.

УДК 632.954:633.15

КОНТРОЛЬ ЗАСОРЕННОСТИ ПОСЕВОВ КУКУРУЗЫ ГЕРБИЦИДОМ РЕЙСЕР, КЭ

Сташкевич Н. С., Сташкевич А. В.

РУП «Институт защиты растений» аг. Прилуки, Республика Беларусь

Критический период вредоносности сорных растений в посевах кукурузы, возделываемой на зеленую массу, начинается с фазы 3-4 листьев культуры, на зерно – с фазы 2-3. Химпрополка посевов в более поздние сроки не гарантирует достоверной прибавки урожая. Поэтому в посевах важнейшее значение будут иметь гербициды почвенного и ростового действия, применяемые в ранние сроки вегетации культуры [2]. В связи с этим целью наших исследований было изучение биологической эффективности довсходового применения гербицида Рейсер, КЭ (флурохлоридон, 250 г/л) «ADAMA Registrations, В. V.», Нидерланды, в норме 1,0-2,0 л/га для защиты посевов кукурузы от однолетних двудольных и злаковых сорных растений.

На опытном поле РУП «Институт защиты растений» в 2019 г. были заложены мелкоделяночные опыты по изучению эффективности гербицида Рейсер, КЭ. Исследования проводили в соответствии с «Методическими указаниями...» [1]. Агротехника возделывания кукурузы общепринятая для Центральной зоны Республики Беларусь. Норма высева — 100 тыс. всхожих зерен/га, ширина междурядий — 70 см, высевался гибрид Роналдинио. Площадь опытных делянок — 20 м², повторность четырехкратная, расположение делянок — рендомизированные блоки. Гербицид вносили ранцевым опрыскивателем «Jacto» после сева до всходов культуры. Расход рабочего раствора — 200 л/га.

Количественно-весовые учеты засоренности проводили через 30 и 60 дней после внесения гербицида. За ростом и развитием растений проводили фенологические наблюдения. Данные обрабатывали методом дисперсионного анализа.

Гибель однолетних двудольных и злаковых сорных растений через месяц после внесения гербицида Рейсер, КЭ составила 94,0-99,5 %, их вегетативная масса уменьшилась на 96,5-99,7 %. Полностью погибли марь белая, ромашка непахучая, звездчатка средняя, пастушья сумка, василек синий. Вегетативная масса горца вьюнкового снизилась на 92,6-100 %, проса куриного и пикульника обыкновенного — на 100 %. В посевах оставались единичные растения пырея ползучего и осота полевого.

При проведении количественно-весового учета засоренности через 60 дней после внесения гибель однолетних сорных растений составила 92,8-93,7 %, вегетативная масса уменьшилась на 86,5-90,1 %. Численность проса куриного уменьшилась на 89,3-92,9 %, масса — на 91,8-92,3 %, горца вьюнкового — 58,8-62,5 и 48,4-60,1 % соответственно. Эффективность против пикульника обыкновенного составила 95,3 % по численности и 94,3-95,6 % по массе. Сохраненный урожай зерна кукурузы составил 72,8-95,9 ц/га.

Гербицид Рейсер, КЭ показал высокую эффективность в защите кукурузы от однолетних двудольных и злаковых сорных растений в норме 1,0-2,0 л/га при внесении до всходов культуры.

ЛИТЕРАТУРА

1. Сорока, С. В. Методические указания по проведению регистрационных испытаний гербицидов в посевах сельскохозяйственных культур в Республике Беларусь / С. В. Со-

рока, Т. Н. Лапковская. – Несвиж: МОУП «Несвижская укрупненная типография им. С. Будного», 2007. – 58 с.

2. Сташкевич, А. В. Камелот, СЭ в посевах кукурузы / А. В. Сташкевич, С. А. Колесник, Н. С. Сташкевич // Земледелие и защита растений. – N 3. – 2019. – С. 43-46.

УДК 631.872:633.11 «324»

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ УДОБРЕНИЙ НА ОСНОВЕ ГУМИНОВЫХ КИСЛОТ НА ПОСЕВАХ ОЗИМОЙ ПШЕНИЦЫ

Столяревский А. Ю., Лосевич Е. Б.

УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

Научными исследованиями и практикой сельскохозяйственного производства доказано, что получение высокой урожайности озимых культур невозможно без применения удобрений. Использование препаратов на основе гуминовых кислот относится к числу ресурсосберегающих приемов, которые позволяют повысить рентабельность производства растениеводческой продукции. Гуминовые удобрения способствуют повышению устойчивости растений к стрессовым факторам среды, увеличивают продуктивность посевов и улучшают качество продукции. При этом затраты на их применение незначительные вследствие небольших норм внесения. Эффективность каждого препарата во многом зависит от метеорологических условий и сроков внесения, что приводит к необходимости установления целесообразности его применения в условиях конкретной почвенно-климатической зоны. Гуминовые препараты являются неспецифическими активаторами иммунной системы, кроме того, они стимулируют развитие корневой системы, регулируют корневое и некорневое питание. Известно, что эффективность гумусовых веществ значительно возрастает при отклонении условий от оптимума (высокие и низкие температуры, недостаток влаги и др.). Поэтому применение гуматов особенно целесообразно при резких изменениях в колебаниях метеорологических условий, которые в последнее время повсеместно участились в связи с изменением климата [1, 2, 3, 4].

Ассортимент препаратов на основе гуминовых кислот, включенных в государственный реестр средств защиты и удобрений, разрешенных на территории Республики Беларусь, насчитывает несколько десятков наименований. В их число входят удобрения Агролиния-С, Гудрогумин, Гумат калия. Агролиния-С (производитель – ЗАО «Био-