ХИМИЧЕСКИЙ СОСТАВ ГОРОХА ОВОЩНОГО НА ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВАХ

Арашкович С. А.

РУП «Институт защиты растений» аг. Прилуки, Республика Беларусь

Овощные бобовые культуры имеют важное значение для полноценного питания населения. По пищевым качествам и вкусовым достоинствам зеленый горошек превосходит другие овощи. Как богатый источник белков, углеводов и витаминов он употребляется в пищу в свежем, консервированном, замороженном и сушеном виде. В нем содержится 20-21 % сухих веществ, которые на 35-40 % состоят из белков и незаменимых аминокислот, на 35-40 % — из сахаров. Белок зеленого горошка богат аргинином и тирозином, а высокое содержание лизина приближает его к животным белкам [1].

Углеводы гороха представлены в основном крахмалом и сахарами. Из других углеводов имеются гемицеллюлоза, клетчатка, пектиновые вещества, пентозы. Содержание углеводов определяет вкусовые качества семян, поэтому имеет важное значение для сортов овощного использования. В связи с вышеизложенным целью наших исследований являлась оценка химического состава гороха овощного [2].

Полевые исследования проводили на опытном поле РУП «Институт защиты растений» в посевах гороха овощного сорта Слодыч в 2020 г. Культуру выращивали, согласно общепринятой для данной зоны агротехнике, на дерново-подзолистой легкосуглинистой почве с содержанием гумуса 2,23 %, кислотностью 5,13, обеспеченностью $P_2O_5-376,0$ мг/кг почвы, K_2O -286,0 мг/кг почвы. Предшественник – яровые зерновые.

В опыте было предусмотрено пять вариантов с различными системами защиты культуры:

- 1. Вариант без проведения защитных мероприятий;
- 2. Интенсивная химическая защита 1: протравитель Максим XL, CK 1,5 л/т; против вредителей Пиринекс Супер, КЭ 0,5 л/га и Актара, ВДГ 0,1 кг/га; против болезней Винтаж, МЭ 1,0 л/га; против сорных растений Корум, ВРК 1,0 л/га + ПАВ ДАШ (1,0 л/га) и Миура, КЭ 0,8 л/га);
- 3. Интенсивная химическая защита 2: то же, что в интенсивной защите 1, только Корум, ВРК (1,5 π /га + ПАВ ДАШ 1,0 π /га);

- 4. Экологизированная защита 1: опрыскивание почвы инокулянтом микробиологическим Ресойлер, Ж 8,0 л/га; обработка семян препаратом биологическим Фунгилекс, Ж 2,5 л/т; против сорных растений Корум, ВРК 1,0 л/га + ПАВ ДАШ (1,0 л/га) и Миура, КЭ 0,8 л/га; в контроле болезней в период вегетации Фунгилекс, Ж, 6,0 л/га;
- 5. Экологизированная защита 2: то же, что и в экологизированной защите 1, только опрыскивание почвы инокулянтом микробиологическим Ресойлер, Ж 10,0 л/га, опрыскивание посевов гербицидом Корум, ВРК (1,5 л/га + ПАВ ДАШ (1,0 л/га));
- 6. Биологическая защита: опрыскивание почвы инокулянтом микробиологическим Ресойлер, Ж 10,0 л/га; обработка семян препаратом биологическим Фунгилекс, Ж 2,5 л/т; в контроле болезней в период вегетации Фунгилекс, Ж 6,0 л/га.

Исследования химического состава гороха овощного проводили в РУП «Научно-практический центр НАН Беларуси по земледелию». Для построения калибровки использовался стандарт аминокислот 250 pmol/µl в 0,1 M HCl (по каталогу Agilent 5061-3331).

Анализ содержания белка в семенах образцов гороха показал, что самое высокое количество сырого протеина отмечено в варианте с биологической защитой и составило 28,51 %, что выше на 0,2-0,8 %, чем в интенсивной защите 1 и 2, и на 1,43 %, чем в контрольном варианте, что говорит о его высокой питательности.

Содержание сахаров во всех вариантах опыта было невысоким и достигло максимума в экологизированной защите $2-5,67\,\%$, что больше в 1,1 раза, чем в вариантах с интенсивной защитой. В варианте без обработки содержание сахара достигло $4,39\,\%$.

Содержание сырого жира, сырой клетчатки и сырой золы в семенах гороха овощного было на одном уровне и находилось в пределах ошибки опыта.

Таким образом, результаты исследований химического состава семян гороха овощного показали, что наибольшую питательную ценность и высокие вкусовые качества обнаружены у семян гороха в вариантах с экологизированной защитой 2 и с биологической защитой. На основании полученных результатов можно сделать вывод, что при выращивании гороха овощного применение микробных препаратов на основе высокоэффективных штаммов микроорганизмов способствует повышению потребительских качеств семян культуры.

ЛИТЕРАТУРА

1. Krug, H. Gemüseproduction / H. Krug. – Paul Parey Verlag Berlin und Hamburg, 1999. – 576 s.

2. Технология возделывания гороха овощного на семена: рекомендации / Ю. М. Забара [и др.]. – Минск: Нац. акад. Наук Беларуси, РУП «Институт овощеводства». – 2013. – 28 с.

УДК 635-13

КОМПЛЕКС МАШИН ДЛЯ ЭКОЛОГИЗИРОВАННОГО ЗЕМЛЕДЕЛИЯ В ОВОЩЕВОДСТВЕ

Аутко А. А.

УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

В последнее десятилетие достаточно интенсивно осваивались промышленные технологии производства овощей в сельскохозяйственных предприятиях и фермерских хозяйствах. В результате возделывания овощных культур с органического земледелия перешло на интенсивные химизированные технологии, которые сопровождаются интенсивной пестицидной нагрузкой, что оказывает негативные действия на почвенное плодородие и качество получаемой продукции.

В этой связи было необходимо создать новые технологии возделывания овощных культур, обеспечивающих максимальное снижение пестицидной нагрузки, реализация которых потребовала разработки новых технических средств.

Были проведены опытно-конструкторские и исследовательские работы по созданию комплекса машин для возделывания овощных культур в системе экологизированного земледелия совместно с предприятием ПООО «Техмаш» (г. Лида).

В результате были разработаны, испытаны и на практике апробированы сельскохозяйственные машины в ОАО «Василишки» Щучинского района и ФИ «Горизонт» Мостовского района и дана оценка их пригодности для экологизированного земледелия.

Для основной обработки почвы наиболее приемлемым является агрегат АПМ-6, который выполняет шесть технологических операций, включая измельчение пожнивных остатков рапса, кукурузы и массы сидеральных культур, мульчирование, их смешивание с верхним аэробным слоем почвы 0-10 см, при одновременном рыхлении нижележащего слоя почвы до 25-28 см с последующим прикатыванием и выравниванием верхнего слоя.

При предпосевной подготовке почвы и уходе за посевами или посадками овощных культур наиболее целесообразно использовать агрегат универсальный АУ-М в 3 модификациях, который обеспечивает