2. Установлено, что при концентрации нефтепродуктов до 1850 мг/дм^3 доза растворения железа не должна превышать $0,52 \text{ г/дм}^3$. При этом обеспечиваются допустимые показатели загрязнений в очищенной воде, пригодной для использования в оборотном водоснабжении

ЛИТЕРАТУРА

- 1. Каратаев, О. Р. Очистка сточных вод электрохимическими методами / О. Р. Каратаев, З. Р. Шамсутдинова, И. И. Хафизов // Вестн. технол. ун-та. -2015. Т. 18, № 22. С. 21–23.
- 2. Экологические проблемы эксплуатации установок мойки автомобилей и пути их решения / И. А. Нечаев, А. Н. Белевцев, В. И. Жаворонкова [и др.] // Водоснабжение и санитарная техника. -2010. -№ 3. С. 19–27.
- 3. Соколов, Л. И. Ресурсосберегающая технология очистки маслоэмульсионных сточных вод: монография / Л. И. Соколов. Вологда: ВоГУ, 2014. 74 с.
- 4. К р ут о в , А. В. Повышение эффективности электрокоагуляции топливно-смазочных фракций в сточных водах моек сельскохозяйственной техники путем их обработки в неоднородном электрическом поле / А. В. Крутов, М. А. Бойко // Изв. Оренбург. гос. аграр. ун-та. − 2022. № 5. С. 153–158.
- 5. Строительные нормы Республики Беларусь СН 3.02.03-2019 «Станции технического обслуживания транспортных средств. Гаражи-стоянки автомобилей» = Станцыі тэхнічнага абслугоўвання транспартных сродкаў. Гаражы-стаянкі аўтамабіляў; введ. с изм. № 1 02.04.2023. Минск, 2023. 40 с.

УДК 639.31:627.81(476.6)

АЛГОРИТМ ОПРЕДЕЛЕНИЯ РИСКОВ РЫБОВОДНОГО РЕЖИМА ЗЕЛЬВЯНСКОГО ВОДОХРАНИЛИЩА

Н. А. КУЗНЕЦОВ, канд. вет. наук, доцент УО «Гродненский государственный аграрный университет», Гродно, Республика Беларусь

Аннотация. Приведены результаты исследований рыбоводного режима Зельвянского водохранилища за 2019–2024 гг. Изучены гидрологические, гидрохимические, гидробиологические, ихтиологические и ихтиопатологические показатели водного режима водохранилища.

По данным инвентаризации водных объектов Республики Беларусь, проведенной в 2019–2023 гг. (Водный кадастр Республики Беларусь за 2019–2023 гг.), на территории Гродненской области находятся водоемы

бассейна р. Неман и три ручья р. Припять. Бассейн р. Неман в Гродненской области насчитывает 1593 водоемов из них: 638 водотоков (большие, средние и малые реки, каналы, ручьи), в том числе 90 притоков больших рек первого порядка; 284 озера, в том числе 129 озер с площадью водного зеркала более 0,5 км² и 155 озер с площадью водного зеркала до 0,5 км²; 671 пруд, в том числе 385 с площадью водного зеркала от 0,5 км² (прим. 1 наливной пруд 0,5 км², в настоящее время не используется) и 286 с площадью водного зеркала до 0,5 км²; 6 русловых водохранилищ, обводненные карьеры.

Крупным водоемом Гродненской области является Зельвянское водохранилище. Проектная площадь водного зеркала — 1200 га, объем воды — 0.028 км 3 , наибольшая глубина — 7.5 м, средняя глубина — 2.6 м, длина — 2.6 км, наибольшая ширина — 2.6 км, длина береговой линии — 2.6 км, соотношение мелководной и глубоководной части ложа — 1:2, показатель удельных затоплений низкий (0.35-0.50), среднегодовой сток — 0.207 км 3 (среднепроточный водоем).

Степень эксплуатации водоема невелика. Развито любительское рыболовство, ранее велся незначительный промысловый лов. В среднем промыслово в год добывалось 1,0–1,5 т рыбы, в основном лещ. В настоящее время промысловый лов не ведется. Вовлечение водоема в народно-хозяйственную деятельность является важной научноприкладной задачей.

Зельвянское водохранилище вошло в список водоемов обязательного мониторинга гидрохимического режима в связи с угрозой возникновения предзаморных и заморных явлений [6].

За период 2019—2024 гг. проведены исследования рыбоводного режима Зельвянского водохранилища, в которых приняли участие ученые и студенты УО «Гродненский государственный аграрный университет» и 4 специализированных НИИ.

Гидрохимический режим Зельвянского водохранилища обусловлен особенностями водоисточника, характером ложа водоема и прилегающего водосбора. Воду из Зельвянского водохранилища следует отнести к гидрокарбонатному типу кальциевой группы со средней степенью минерализации (до 250 мг/л). Велика доля ионов кальция (43–45 мг/л) и магния (10,9 мг/л). По суммарной величине этих ионов определена общая жесткость (3,05 мг-экв/л).

По 31-му гидрологическому и гидрохимическому показателю водохранилище Зельвянское в целом соответствовало по ПДК экологи-

ческим и санитарно-гигиеническим нормативам. В отдельные периоды имело место превышение ПДК по фосфат-иону (5,3 ПДК), общему железу до 0,837 мг/дм³, БПК $_5$ (1,3 ПДК), ХПК $_{\rm Cr}$ (2,6 ПДК), азота общего по Къельдалю (1,03–2,10 ПДК), содержанию нефтепродуктов и др.

Гидрохимический режим за исследуемый период соответствовал рыбоводным нормам, действующим в Республике Беларусь, для выращивания рыбы по технологии пастбищного рыбоводства [4].

Вместе с тем к особенностям водохранилища следует отнести то, что происходит активное зарастание зеркала водоема макрофитами, а в июле — августе отмечается интенсивное цветение синезеленых водорослей [1]. За 40 лет с момента заполнения накопилось значительное количество иловых осадков аллахтонного и автохтонного происхождения, что может привести к негативным явлениям. К негативным последствиям можно отнести: возможность замора рыбы, ухудшений экологической обстановки, снижения активной заинтересованности в туризме, спортивной рыбалке, перспектив восстановления промыслового лова и развития аквакультуры [3].

По составу ихтиофауны Зельвенское водохранилище можно отнести к лещево-щучье-плотвичным водоемам. В водохранилище встречаются карась серебряный, окунь, ерш, уклейка, красноперка и др. – всего 22 вида пресноводных рыб. Из зарыбляемых видов – карп, щука, карась серебряный и пестрый толстолобик [2].

В июне – июле 2022 г. произошел масштабный летний замор рыбы. 99 % погибшей рыбы – карась серебряный. Бактериологические, микологические и вирусологические исследования, проведенные в период замора, дали отрицательный результат. При паразитологических исследованиях рыб выявлены случаи эндо- и эктопаразитозов: постодиплостомоз, кавеоз, лигулез, ихтиофтириоз, аргулез, писциколез. При этом на момент исследования по указанным выше паразитам индекс обилия (М) составил от 0,05 до 0,36, экстенсивность инвазии (Е) составила 3,57–8,92 % и интенсивность инвазии (I) – 2–6 паразитов на особи [3]. По нашим наблюдениям зараженность популяции леща лигулезом имеет тенденцию к активному нарастанию.

На основе изучения особенностей гидрологических, гидрохимических, гидробиологических, ихтиологических и ихтиопатологических, по определенному списку, показателей сформирован перечень характеристик рыбоводного режима и предложены методы оздоровления среды обитания, в том числе:

- 1) мелиоративные (углубление ложа водоема, восстановление активного тока воды на питающих водотоках);
- 2) химические (известкование с целью ускорения процесса минерализации иловых осадков);
- 3) биологические методы (зарыбление РЯР [5], создание масштабной популяции рыб-детритофагов, альголизация).

Таким образом, на территории Гродненской области расположено около 1600 водоемов, большая часть которых пригодна для развития рыбоводства с использованием технологий аквакультуры. Оценка факторов риска рыбоводного режима позволяет определить эффективные методы контроля и нормализации среды обитания рыб.

ЛИТЕРАТУРА

- 1. Зарастаемость макрофитами и прибрежная растительность Зельвянского водохранилища / Т. В. Козлова, А. И. Козлов, Н. А. Кузнецов, Н. П. Дмитрович // Пинские чтения: материалы I Междунар. науч. конф., г. Пинск, 15–16 сент. 2022 г. / Полес. гос. ун-т. Пинск: Полес. гос. ун-т, 2022. С. 37–38.
- 2. Кузнецов, Н. А. Ихтиофауна водохранилища «Зельвянское» в сезоне 2021 года / Н. А. Кузнецов // Животноводство и ветеринарная медицина. -2022. -№ 3 (46). C. 45-49.
- 3. Кузнецов, Н. А. К вопросу о заморе рыб в водохранилище Зельвянское в июле 2022 года / Н. А. Кузнецов // Сельское хозяйство проблемы и перспективы: сб. науч. тр. Т. 57. Ветеринария / М-во сел. хоз-ва и прод. Респ. Беларусь, УО «Гродн. гос. аграр. ун-т»; под ред. В. К. Пестиса. Гродно: ГГАУ, 2022. С. 64–72.
- 4. Кузнецов, Н. А. Ретроспективный анализ гидрохимического режима водохранилища Зельвенское периода 2010–2021 годов / Н. А. Кузнецов // Актуальные проблемы интенсивного развития животноводства: сб. науч. тр. Вып. 25: в 2 ч. / гл. ред. В. В. Великанов. Горки: БГСХА, 2022. Ч. 2. С. 298–305.
- 5. Кузнецов, Н. А. Первичная оценка целесообразности биологического метода борьбы с зарастаемостью макрофитами акватории водохранилища Зельвянское с использованием растительноядных рыб / Н. А. Кузнецов // Животноводство и ветеринарная медицина. 2022. № 1 (44). С. 24–27.
- 6. Национальная система мониторинга окружающей среды Республики Беларусь: результаты наблюдений, 2020 / М-во природ. ресурсов и охраны окруж. среды Респ. Беларусь, Гл. информ.-аналит. центр Нац. системы мониторинга окруж. среды в Респ. Беларусь, Респ. центр по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окруж. среды; под общ. ред. Е. П. Богодяж. Минск: Респ. центр по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окруж. среды. 2021. 591 с.