РАЗРАБОТКА ТЕХНОЛОГИИ И ИССЛЕДОВАНИЕ ПРОДУКТОВ ИЗ ПЕРСПЕКТИВНОГО СОРТА НА ОСНОВАНИИ СРАВНИТЕЛЬНОГО АНАЛИЗА ОБРАЗЦОВ СОИ

Бутова С. В., Шахова М. Н., Воронцов В. В.

ФГБОУ ВО «Воронежский государственный аграрный университет имени императора Петра I»

г. Воронеж, Российская Федерация

В настоящее время на повестке дня остро стоит вопрос обеспечения населения продуктами питания с полноценной белковой составляющей. В мировой практике для обеспечения широких масс населения полноценным белковым питанием широкое применение приобрела соя и продукты на ее основе. Российский агропромышленный комплекс и перерабатывающая промышленность в настоящее время демонстрируют существенный рост объемов выращивания и переработки сои.

Разработка гаммы продуктов на основе переработки соевых семян для получения продуктов функционального назначения является эффективным и экономически оправданным средством для повышения качества жизни человека. Употребление различных продуктов переработки сои может способствовать решению вопросов рационального питания и ликвидации дефицита белка и биологически активных веществ в пищевых продуктах.

Особое внимание уделяется поиску новых сортов сои, перспективных для производства не только растительного масла, богатого ненасыщенными жирными кислотами, необходимыми здоровому росту человека, но и белоксодержащих продуктов (соевое молоко и напитки на его основе, соевое мука, концентраты, изоляты и т. п.).

Задачей исследования являлось изучение сортового разнообразия сои по биохимическим показателям семян и выбор сорта для рационального использования при производстве белковых продуктов.

Было проведено исследование 6 сортов российской и белорусской селекции (Воронежская 29, Воронежская 31, Белгородская 48, Припять, Ясельда, Рось).

В ходе опытов были определены сорта с высоким содержанием жиров (Ясельда, Припять) и массовой доли белка (Рось, Ясельда).

Чем больше содержание сырого белка в исходных семенах, тем выше его концентрация в конечном продукте, полученном после всех видов обработки, поэтому для получения белкового продукта с незначительным содержанием жира выбран сорт Рось с содержанием белка 40,5 %.

При исследовании аминокислотного состава рассматриваемого сорта наблюдали преобладающее содержание глютамина, который наиболее значим для работы иммунной системы и глицина, улучшающего обменные процессы в головном мозге и нервной системе.

При получении белкового продукта в лабораторных условиях проводили их очистку, размол, диспергирование измельченного сырья и экстракцию белка. Полученную суспензию разделяли центрифугированием. Белок осаждали в изоэлектрической точке. Надосадочную сыворотку удаляли декантированием. К белковому сгустку добавляли дистиллированную воду, производили перемешивание, выдерживание и промывку. Нейтрализованный белковый раствор сгущали центрифугированием. Полученный сырец белкового продукта подвергали СВЧ сушке.

На выходе имели порошкообразный продукт без запаха светло-кре-

мового цвета. Данные биохимического анализа полученного продукта свидетельствуют о высоком содержании белка – 85,4 %. Содержание жира – около 6 %.

Аналоги кисломолочных продуктов на основе соевой дисперсии являются продуктами функционального назначения благодаря комплексу полезных свойств, присущих кисломолочным продуктам и уникальному составу соевых продуктов.

Технологический процесс производства соевой дисперсии включает водную экстракцию белков с последующим отделением от окары, стерилизацию и охлаждение. Для снижения характерного бобового запаха и привкуса замачивание семян сои проводили в 2,5%-м растворе гидрокарбоната натрия с последующим отделением оболочки и бланшированием семян. Для повышения содержания сухих веществ в дисперсии снижали количество добавляемой воды к размолотой массе до 3:1 соответственно.

По химическому составу соевая дисперсия приближена к обезжиренному коровьему молоку. Оба продукта представляют собой низкокалорийные напитки высокой пищевой ценности.

Важным критерием биологической ценности белковых продуктов является их аминокислотный состав. Переваримость белков соевой дисперсии находится на уровне 92,6 %, что практически идентично для белков коровьего молока.

Соевая дисперсия имеет достаточно высокое содержание незаменимых аминокислот (42,3 %) с преобладанием лизина, лейцина и треонина. Для расширения ассортимента продукции диетического и лечебнопрофилактического назначения на основе натурального растительного сырья с доступной сырьевой базой и технологией переработки были разработаны соевые йогуртные напитки с различными плодово-ягодными наполнителями.

При выработке йогуртного напитка была использована лиофилизированная закваска LATBY, содержащая чистые культуры молочнокислых бактерий L. delbrueckii подвида bulgaricus и S. thermophiles.

Полученный продукт оценивали по органолептическим показателям, характеру сгустка, вязкости и кислотности. Было установлено, что рН продукта снижается с течением времени и к шести часам достигает значения 4,7. К этому времени образуется плотный сгусток однородной консистенции с незначительным привкусом горечи, обусловленной образованием горьких пептидов в связи с протеолитическими процессами. Вязкость полученного продукта составила 159,4 мм²/с.

Для обогащения соевого йогуртного напитка натуральными биологически активными веществами, смягчения характерного привкуса использовали ягоды смородины, малины, плоды облепихи (свежие и замороженные).

Основными функциональными ингредиентами ягод являются витамин С (наиболее важный иммуномодулятор и антиоксидант), витамины группы В, пектиновые вещества и клетчатка, дубильные вещества, органические кислоты, полифенольные соединения.

Полученные напитки обладают привлекательными органолептическими характеристиками, содержат витамин С и могут быть рекомендованы населениею для систематического употребления.

ЛИТЕРАТУРА

- 1. Дудикова, Г. Н. Функциональные кисломолочные напитки с экстрактами черной смородины и облепихи / Г. Н. Дудикова, А. В. Чижаева // Рациональное питание, пищевые добавки и биостимуляторы. -2016. -№ 1. С. 59-64.
- 2. Кирдищев, Д. В. Исследование электротехнологических методов сушки продукции сельского хозяйства / Д. В. Кирдищев, Д. Н. Кирдищева // Вестник ФГОУ ВПО Брянская ГСХА. -2021.-№5 (87).
- 3. Корчагина, С. Н. Использование соевой дисперсии в качестве питательной среды для получения йогуртной закваски / С. Н. Корчагина, В. В. Воронцов, С. В. Бутова // Научный потенциал молодых реструктуризации АПК: материалы LV студенческой научной конференции. 2004. С. 210-213.
- Соколенко, Г. Г. Микробиологические особенности кисломолочных продуктов из сои / Г. Г. Соколенко, К. К. Полянский // Молочная промышленность. – 2008. – № 7. – С. 42-43.
- 5. Шахова, М. Н. Исследование сортообразцов сои отечественной и белорусской селекции, выращенных в условиях ЦЧР / М. Н. Шахова, В. В. Воронцов, С. В. Бутова // Современные технологии сельскохозяйственного производства: сборник научных статей по материалам XXVI Международной научно практической конференции. Гродно: ГГАУ, 2023. С. 315-317.
- 6. Шахова, М. Н. Разработка технологии получения белково-липидного комплекса из семян сои / М. Н. Шахова, С. В. Бутова, В. В. Воронцов // Технологии и товароведение сельскохозяйственной продукции. -2023. № 2 (21). С. 65-73.