Таблица 2 – Урожай сои сорта Славянка и его структура при применении почвенных биопрепаратов (2024 год)

Вариант	Урожай- ность, ц/га	Элементы структуры урожая			
		Ср. кол-во семян, шт./раст.	Масса семян с од- ного растения, г	Масса 1000 семян, г	
Контроль	17,6	54,0	6,8	126,1	
Экогум Био (3л/га)	19,0	65,0	9,7	149,0	
Альбит-БР(0,5л/га)	19,4	71,0	9,8	138,6	
Альбит-БР (1 л/га)	22,4	77,0	11,7	150,8	
Альбит-БР (5 л/га)	20,0	81,0	10,7	132,5	
Альбит-БР(10 л/га)	18,7	59,0	7,4	127,0	
НСР ₀₅ , ц/га	1,6	-	5 A	-	

Таким образом, во всех вариантах применения биопрепаратов возрастала индивидуальная продуктивность растений в количественном и весовом выражении. Наибольшими значениями таких показателей характеризовались варианты с внесением Альбит-БР 1 л/га и 5 л/га.

УДК 631.816.12:633.34

ЭФФЕКТИВНОСТИ НЕКОРНЕВЫХ ПОДКОРМОК СОИ МАКРО-И МИКРОУДОБРЕНИЯМИ РАЗЛИЧНОГО ЭЛЕМЕНТНОГО СОСТАВА

Халецкий В. Н.¹, Тимощенко О. Г.²

- ¹ РУП «Брестская ОСХОС НАН Беларуси»
- г. Пружаны, Республика Беларусь;
- ² УО «Гродненский государственный аграрный университет»
- г. Гродно, Республика Беларусь

При современных технологиях возделывания сельскохозяйственных культур роль применения макро- и микроудобрений постоянно возрастает и становится одним из важнейших факторов, обеспечивающих высокий уровень урожайности и стабильности растениеводческой отрасли.

Перспективным направлением регулирования режима питания растений является использование комплексных микроудобрений, которые содержат целый ряд необходимых растениям микроэлементов, а также стимуляторы роста [1].

В последнее время на рынке появились органоминеральные удобрения, содержащие в своем составе (кроме питательных элементов в легкодоступной для листового питания растений форме) пептиды и свободные

аминокислоты, обладающие стресс-протекторным и стимулирующим действием.

Цель исследований: изучить приемы некорневого стимулирования генеративных процессов с помощью химических и биологических средств.

Полевые исследования проводились в урочище «Гаек». Пахотный горизонт почвы на этом участке имел следующие показатели: pH - 5,51; P_2O_5 (по Кирсанову) — 234 мг/кг почвы; K_2O (по Кирсанову) — 199 мг/кг почвы; гумус (по Тюрину) — 2,31 %. Система удобрения: $N_{13}P_{60}K_{90}$ (хлористый калий — 1,5 ц/га, аммонизированный суперфосфат — 1,5 ц/га осенью). Общая площадь делянки в технологических опытах и в сортоиспытании составляет 28 м^2 , учетная — 18 м^2 .

В связи с этим в рамках данных исследований был поставлен полевой опыт, включающий как варианты с использованием традиционных уже (хелатных) форм удобрений (Комплемет-Бор, Комплемет-Молибден, Комплемет-РКМg), так и варианты с их сочетанием с последующей подкормкой органоминеральным удобрением Комплемет-Бобовое Импульс (N – 30 г/л, $P_2O_5 - 120$ г/л, $K_2O - 80$ г/л, $SO_4 - 10$ г/л, Mn - 15 г/л, Cu - 2 г/л, Zn - 5 г/л, B - 8 г/л, Mo - 15 г/л, Mo - 15 г/л, активное органическое вещество – 200 г/л).

Опыт заложен на сорте Пущанская, который в условиях юго-запада Беларуси характеризуется наибольшим потенциалом продуктивности среди сортов белорусской селекции, а значит и наиболее отзывчив на улучшение условий ухода.

Фенологические наблюдения за ростом и развитием сои в процессе вегетации не выявили заметных различий между вариантами некорневых подкормок по срокам наступления очередных фаз развития.

Экспресс-анализ содержания пигментов в листьях сои позволил установить зависимость концентрации хлорофилла в листьях и индекса азотного баланса от варианта некорневых подкормок (таблица 1). Отмечено, что действие микроудобрений Комплемет-Бор (1 л/га) и Комплемет-Молибден (1 л/га), внесенных в баковой смеси в фазу 3-х листьев, более выражено, чем применение в те же сроки удобрения Комплемет-РКМg (2 л/га), что можно объяснить достаточным содержанием указанных зольных элементов в почве опытного участка и внесением фосфорнокалийных удобрений в основную заправку. Еще более выражен озеленяющий эффект от применения органоминерального удобрения Комплемет-Бобовые Импульс (2 л/га) в фазу бутонизации.

Таблица 1 - Влияние некорневых подкормок на содержание пигментов в листьях сои сорта Пущанская (2024 г.)

Наименование препарата	Средние показатели			
	Хлорофилл, мкг/см ²	Флаво- ноиды, мкг/см ²	Анто- цианы, мкг/см ²	NBI
Контроль без подкормок	25,809	1,357	0,041	18,942
Комплемет-Бор (1 л/га) + Комплемет- Молибден (1 л/га) в фазу 3-х листьев	32,553	1,256	0,009	26,134
Комплемет-РКМg (2 л/га) в фазу 3-х листьев	31,200	1,309	0,013	23,650
Комплемет-Бобовые Импульс (2 л/га) в фазу бутонизации	32,504	1,417	0,011	22,949
Комплемет-РКМg (2 л/га) / Комплемет-Бобовые Импульс (2 л/га) в фазу бутонизации	32,794	1,277	0,018	26,129
Комплемет-Бор (1 л/га) + Комплемет- Молибден (1 л/га) Комплемет-Бобо- вые Импульс (2 л/га) в фазу бутони- зации	39,166	1,288	0,006	30,524
В среднем по вариантам подкормки	33,643	1,309	0,011	25,877

Действие на элементы структуры урожая было более выраженным. Однако показатель массы 1000 семян в данном опыте мало зависел от вариантов некорневой подкормки. Только в случае комбинации из трех препаратов (Комплемет-Бор (1 л/га) + Комплемет-Молибден (1 л/га) в фазу 3-х листьев / Комплемет-Бобовые Импульс (2 л/га) в фазу бутонизации) отмечено заметное его повышение: на 14,5 г (таблица 2).

Количество же семян на одном растении и их масса при использовании некорневых подкормок заметно возрастали во всех вариантах. Высокие значения обсемененности растений (57 шт. против 43 на контроле) отмечены также в варианте Комплемет-РКМg (2 л/га), но при его сочетании с последующим применением Комплемет-Бобовые Импульс не только ожидаемого дальнейшего повышения индивидуальной продуктивности одного растения сои не последовало, но даже отмечена тенденция формирования меньшего количества семян (таблица 2).

Таблица 2 — Влияние приемов подкормки посевов на формирование элементов продуктивности растений сои сорта Пущанская (2024 год)

1 . 0	1 2	,	, ,
Вариант обработки	Ср. кол-во семян,	Масса семян с 1 растения,	Macca 1000 ce-
Барнані обработки	шт./раст.	г г растения, г	мян, г
1	2	3	4
Контроль без подкормок	43,0	5,5	128,9
Комплемет-Бор (1 л/га) + Комплемет-Молибден (1 л/га) в фазу 3-х листьев	45,0	4,8	128,9
Комплемет-РКМg (2 л/га) в фазу 3-х листьев	57,0	8,7	129,5

Продолжение таблицы 2

1	2	3	4
Комплемет-Бобовые Импульс (2 л/га) в фазу бутонизации	45,0	5,6	124,1
Комплемет-РКМg (2 л/га) в фазу 3-х листьев / Комплемет-Бобовые Импульс (2 л/га) в фазу бутонизации	52,0	6,6	128,0
Комплемет-Бор (1 л/га) + Комплемет-Молибден (1 л/га) в фазу 3-х листьев / Комплемет-Бобовые Импульс (2 л/га) в фазу бутонизации		8,8	143,4
В среднем по вариантам подкормки	52,0	6,9	130,8

Уборочные данные также подтвердили положительный эффект от некорневых подкормок. Высокий эффект (+2,0 ц/га к контролю) получен при некорневой подкормке в момент появления первых цветков у сои органоминеральным удобрением Комплемет-Бобовые Импульс (2 л/га). Использование же данного удобрения на фоне ранее внесенных борно-молибденовых или фосфорно-калийных магнийсодержащих форм заметно усиливает эффект.

ЛИТЕРАТУРА

1. Русских, И. А. Урожайность сортов сои и их реакция на изменение температуры воздуха в Беларуси / И. А. Русских // Овощеводство: Сборник научных трудов / Белорусский научно-исследовательский институт овощеводства. — Минск, 1999. — Вып.11. — С. 85-94.

УДК 633.14

ОЦЕНКА ПРЕДШЕСТВЕННИКОВ ПРИ ВОЗДЕЛЫВАНИИ ОЗИМОГО РАПСА В УСЛОВИЯХ ЦЕНТРАЛЬНОЙ ЧАСТИ БЕЛАРУСИ

Хотько В. Я., Радовня В. А.

УО «Белорусская государственная сельскохозяйственная академия» г. Горки, Республика Беларусь

Многолетний опыт возделывания озимого рапса в условиях Республики Беларусь показывает, что поздние сроки сева ведут к существенному снижению урожайности маслосемян. Но проблема состоит не в поздних сроках сева вообще, а в недостаточном осеннем развитии растений. Следовательно, улучшение условий развития растений рапса в осенний период может снивелировать опоздание со сроками сева и существенно увеличить урожайность маслосемян.

Целью наших исследований является оценить эффективность дополнительных мер осеннего ухода за посевами озимого рапса при поздних сроках сева.