По данным наших исследований, содержание подвижного марганца в почвах полевого опыта снижается (таблица).

Исходное содержание микроэлемента соответствовало высокой степени обеспеченности почв данным элементом. В среднем за 32 года исследований содержание подвижного марганца снизилось на 76 %, и изучаемые нами почвы можно отнести к почвам с низкой обеспеченностью микроэлементом.

Таким образом, изучение многолетней динамики подвижных микроэлементов в исследуемых нами почвах показало, что по содержанию таких элементов, как медь, цинк и марганец, изучаемые почвы относятся к низкообеспеченным, что, в свою очередь, может сказаться на уровне урожайности и показателях качества возделываемых сельскохозяйственных культур.

ЛИТЕРАТУРА

- 1. Лукин, С. В. Микроэлементы в почвах ЦЧО / С. В. Лукин // Земледелие. -2015. -№5. С. 26-28.
- 2. Протасова, Н. А. Микроэлементы: биологическая роль, распределение в почвах, влияние на распространение заболеваний человека и животных / Н. А. Протасова // Соросовский образовательный журнал. − 1998. №12. С. 32-37.
- 3. Орлов, Д. С. Химия почв / Д. С. Орлов, Л. К. Садовникова, Н. И. Суханова. М.: Высшая школа, 2005. 558 с.
- 4. Система земледелия Курской области. Курск, 1982. 205 с.
- 5. Митрохина, О. А. Некорневая подкормка микроудобрениями и урожай озимой пшеницы / О. А. Митрохина // Земледелие. − 2013. №7. С. 41.

УДК 633.11. «324».631.52:632.4

ЭЛЕМЕНТЫ СТРУКТУРЫ УРОЖАЯ И ФИЗИЧЕСКИЕ СВОЙСТВА ЗЕРНА ИСХОДНОГО МАТЕРИАЛА МЯГКОЙ ОЗИМОЙ ПШЕНИЦЫ

Михайлова С. К., Живлюк Е. К., Бородич Е. А.

УО «Гродненский государственный аграрный университет»

г. Гродно, Республика Беларусь

Селекционная работа начинается с подбора исходного материала, от которого зависит эффективность и результативность селекционного процесса.

Более тридцати лет в УО «Гродненский государственный аграрный университет» ведется селекционная работа по созданию новых сортов мягкой озимой пшеницы. Долгое время руководил этой работой К. В. Коледа. В результате проведенной селекционной работы созданы высокопродуктивные сорта озимой пшеницы: Гродненская 7, Веда, Ядвися, Малия, Зарица, Городничанка 5, Раница и др.

Селекция на продуктивность представляет одну из самых трудных и сложных задач, что связанно с необходимостью сочетания в одном сорте большого числа ценных признаков. Поэтому предварительная всесторонняя оценка коллекционных сортов и образцов озимой пшеницы позволяет значительно повысить результативность селекционного процесса [2].

Цель исследований – определить урожайность и ее элементы структуры, а также физические свойства зерна у коллекционных сортов озимой пшеницы различного географического происхождения.

Исследования проводили на опытном поле УО СПК «Путришки» Гродненского района в 2022-2023 гг. Почва опытного участка дерновоподзолистая легкосуглинистая, с высокими агрохимическими показателями (pH - 6,0-6,2; гумус - 2,1-2,2 %; содержание P_2O_5-215 -235 мг; K_2O-215 -235 мг на кг почвы).

Коллекционный питомник закладывался по методике ВИР. Площадь учетной делянки $-1~{\rm M}^2$, норма высева $-500~{\rm mt./m^2}$. Изучались следующие сорта мягкой озимой пшеницы: Бандит, Мокка, Туарег, Чехия. В качестве контроля использовался сорт Гирлянда (Беларусь).

Урожайность — важнейший показатель, который зависит от многих факторов, одним из которых является сорт. Данные по урожайности изучаемых сортов озимой пшеницы представлены в таблице.

Из данных таблицы видно, что в среднем за два года исследований наиболее урожайными оказались сорта Бандит (74,7 ц/га) и Чехия (71,3 ц/га). Прибавка зерна по сортам к контролю составила 9,8-24,1 ц/га соответственно.

Таблица – Продуктивность и физические свойства зерна озимой пшеницы (среднее за 2022-2023 гг.)

Наименова- ние сортов	Урожай- ность, ц/га	Кол-во продук- ных стеб- лей, шт./м ²	Кол-во зерен в колосе, шт.	Масса зерна с од- ного ко- лоса, г	Стекло- видность зерна, %	Масса 1000 зе- рен, г
Гирлянда (к.)	50,6	362	30,3	1,4	51,4	46,3
Бандит	74,7	325	44,5	2,3	55,5	53,2
Мокка	65,5	410	34,2	1,6	50,7	42,7
Туарэг	60,4	503	37,2	1,2	54,5	31,8
Чехия	71,3	339	44,6	2,1	52,7	46,9

Важно определить, из каких элементов структуры складывается урожайность зерна изучаемых сортов озимой пшеницы.

Важным элементом структуры урожая зерновых культур является число продуктивных стеблей в расчете на единицу площади.

Из приведенных данных в таблице видно, что изучаемые сорта имели различное количество продуктивных стеблей. Максимальное количество стеблей сформировал сорт Туарэг (503 $\rm mt./m^2$). Это выше, чем в контроле, на 141 $\rm mt./m^2$ продуктивный стебель. Несколько ниже этот показатель у сорта Мокка — 410 $\rm mt./m^2$.

Все изучаемые сорта по количеству зерен в колосе превысили контрольный сорт Гирлянда. Максимальное количество зерен в колосе сформировали сорта Чехия (44,6 шт.) и Бандит (44,5 шт.), что значительно выше контрольного варианта.

В коллекционном питомнике озимой пшеницы наблюдаются определенные различия по массе зерна с колоса. Наибольшую массу зерна с колоса сформировали два сорта озимой пшеницы — Чехия и Бандит (более 2,0 г). Наименьшая масса зерна оказалась у контрольного сорта Гирлянда (1,4 г).

Один из важнейших факторов, влияющих на качество пшеничного зерна, — почвенно-климатические условия. В нашем регионе преобладают дерново-подзолистые почвы, прохладное и влажное лето, которые обеспечивают получение высоких урожаев зерна с удовлетворительным качеством.

К физическим свойствам зерна относится много показателей. В своих исследованиях мы определили массу 1000 зерен и стекловидность.

Масса 1000 зерен – один из важнейших показателей крупности зерна, определяющий уровень урожайности.

Масса 1000 зерен у изучаемых номеров озимой пшеницы в сильной степени зависит от метеорологических условий в период вегетации растений. В среднем за 2 года исследований наибольшая масса 1000 зерен отмечена у сортов Бандит (53,2 г) и Чехия (46,9 г).

Стекловидность – параметр, характеризующий консистенцию эндосперма. Результаты исследований Коледы К. В. и др. ученых указывают, что стекловидность зерна в почвенно-климатических условиях нашей республики не превышает 60 %. Можно отметить, что по результатам наших исследований этот показатель также не превышал 60 % [1].

В среднем за 2 года исследований стекловидность зерна изучаемых сортов озимой пшеницы составляла 50,7-55,5 %. Лучшими по данному показателю оказались сорта Бандит (55,5 %) и Туарэг (54,5 %).

В результате исследований установлено, что сорта мягкой озимой пшеницы Бандит и Чехия по урожайности, количеству продуктивных стеблей, массе зерна с колоса, стекловидности и массе 1000 зерен превысили контрольный сорт Гирлянда, поэтому они являются ценным исходным материалом и могут использоваться в дальнейшем селекционном процессе.

ЛИТЕРАТУРА

- 1. Коледа, К. В. Результаты селекции мягкой озимой пшеницы на урожайность и качество зерна в агроклиматических условиях Республики Беларусь / К. В. Коледа, Е. К. Живлюк, И. И. Коледа // Наследие Н. И. Вавилова в развитии биологических и сельскохозяйственных наук: Материалы междунар. науч.-практ. конф, Курган, 6 декабря 2012 г. Курган: Изд-во Курганской ГСХА, 2016. С. 18-22.
- 2. Михайлова, С. К. Урожайность и качество зерна селекционных номеров мягкой озимой пшеницы / С. К. Михайлова, Р. К. Янкелевич // Современные технологии сельскохозяйственного производства: сборник научных статей по материалам XIX Международной научно-практической конференции (Гродно, 25 марта, 7 апреля, 3 июня 2016 года): агрономия, защита растений, технология хранения и переработки сельскохозяйственной продукции / Учреждение образования «Гродненский государственный аграрный университет». Гродно, 2016. С. 82-84.

УДК 634.74:581.143.6

PA3MHOЖЕНИЕ В КУЛЬТУРЕ IN VITRO COPTOB ACTINIDIA POLYGAMA (SIEB. ET ZUCC.) MAXIM.

Морозова М. Д.

РУП «Институт плодоводства»

аг. Самохваловичи, Минский р-н, Республика Беларусь

Растения рода Actinidia Lindl., относящегося к семейству Actinidaceae Hutch., широко распространены в странах Азии. Actinidia polygama – листопадный кустарник, длиной до нескольких метров, растущий на берегу ручьев в Японии и Корее [1]. В нашей стране актинидия является малораспространенной плодовой культурой [2], однако за последние десятилетия такие виды, как А. arguta, А. kolomikta, А. Polygama, набирают популярность в Восточной Европе, благодаря содержанию в большом количестве витамина С в плодах, а также возможности применения в лечебных целях: как вяжущее и мочегонное средство, жаропонижающее [1, 3].

Использование биотехнологических методов для размножения малораспространенных культур способствует сохранению уникальных сортов и позволяет получить оздоровленный посадочный материал в условиях возрастания потребительского спроса на нетрадиционные плодовые культуры [2].

Цель работы – оценить эффективность размножения сортов A. polygama в культуре in vitro.

Работа по размножению в культуре in vitro сортов A. polygama проводилась в отделе биотехнологии РУП «Институт плодоводства». Объекты исследования – растения-регенеранты сорта A. polygama Брюнет (мужская форма) и Солнцеликая (женская форма), свободные от