ВЛИЯНИЕ АЗОТНЫХ УДОБРЕНИЙ НА ПОКАЗАТЕЛИ СТРУКТУРЫ УРОЖАЯ ЯРОВОЙ ПШЕНИЦЫ

Бородин П. В., Зимина М. В., Лосевич Е. Б., Синевич Т. Г. УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

Важным методом оценки развития сельскохозяйственных культур, позволяющим установить закономерности формирования урожая и его зависимость от действия многообразных факторов, включая обеспеченность растений элементами минерального питания, прежде всего, азотом, является анализ структуры урожая. К приоритетным элементам структуры урожая зерновых культур относят плотность продуктивного стеблестоя, число зерен в колосе и массу 1000 зерен. Принято считать, что с учетом рассматриваемых показателей урожайность зерна на 50 % определяется продуктивной кустистостью, на 25 % — озерненностью колоса и на 2 % — массой 1000 семян.

Все это и определило актуальность исследований по изучению влияния различных форм карбамида на показатели структуры урожая яровой пшеницы. Полевые опыты были проведены на опытном поле УО «ГГАУ». Почва опытного участка дерново-подзолистая супесчаная со следующими агрохимическими показателями пахотного слоя: содержание гумуса — 1,96-2,0 %, P_2O_5 — 199-229 мг/кг, K_2O — 188-207 мг/кг почвы, pH_{KCl} — 5,9-6,0.

Опыты проводились по следующей схеме: 1. $P_{60}K_{150}$ — Фон (контроль); 2. Фон + $N_{70+40+30}$ (карбамид); 3. Фон + $N_{70+40+30}$ (карбамид с добавкой минерала трепел).

Повторность опыта четырехкратная, общая площадь делянки $-25~{\rm M}^2$, размещение делянок однорядное, последовательное.

Технология возделывания яровой пшеницы была общепринятой и соответствовала требованиям, рекомендуемым для данных почвенноклиматических условий.

Исследования проводились с сортом Дарья с нормой высева 4,5 млн. всхожих семян/га. Предшественник – кукуруза.

Удобрения фосфорные и калийные вносились до посева. Из фосфорных удобрений использовали аммонизированный суперфосфат, калийных – хлористый калий. Азотные удобрения вносились до посева, в фазы конец кущения – начало выхода в трубку и появление флагового листа.

Анализ полученных данных показал, что внесение карбамида увеличило количество продуктивных стеблей относительно контрольного варианта на 53 шт./м 2 , карбамида с добавкой минерала трепел — на 53 шт./м 2 . В этих же вариантах опыта число зерен в колосе составило

26,7 и 27,1 шт., что соответственно больше контроля на 3,5 и 3,9 шт. Внесение изучаемых азотных удобрений оказало положительное влияние и на массу 1000 семян. Под влиянием карбамида она возросла на 5,6 г, карбамида с добавкой минерала трепел — на 6,4 г.

В целом необходимо отметить, что в варианте с внесением карбамида с добавкой минерала трепел получено наибольшее увеличение рассматриваемых показателей структуры урожая, что, в свою очередь, в сравнении с карбамидом позволило получить прибавку урожайности 3,1 п/га.

УДК 631.559:633.1:631.89

ИНТЕНСИВНОСТЬ РАЗЛОЖЕНИЯ ЦЕЛЛЮЛОЗЫ ПРИ ПРИМЕНЕНИИ МИКРОБИОЛОГИЧЕСКИХ ПРЕПАРАТОВ В ЗВЕНЕ ЗЕРНОПРОПАШНОГО СЕВООБОРОТА

Брескина Г. М.

ФГБНУ «Курский федеральный аграрный научный центр» г. Курск, Российская Федерация

Пожнивные растительные остатки являются побочным продуктом в растениеводстве, их использование в качестве удобрения имеет как преимущества, так и недостатки. Из положительных свойств соломы можно выделить то, что она является главным источником углерода для почв сельскохозяйственного назначения [1]. При разложении соломистых остатков выделяются питательные вещества, которые необходимы для роста растений [2]. Солома защищает почву от эрозии, предотвращая вымывание верхнего слоя почвы при ливневых дождях [3]. Она может подавлять рост сорняков, создавая барьер, который затрудняет их прорастание [4].

При этом существуют и отрицательные последствия при использовании соломы в земледелии. Так, при разложении растительных остатков потребляется больше азота, чем она выделяет, что приводит к недостатку этого элемента в почве [5]. Солома может быть источником патогенов и вредителей [6]. Для эффективного использования соломы необходима предварительная обработка, например, компостирование [7], чтобы ускорить процесс разложения, что влечет к экономическим затратам в производстве.

В естественных экосистемах из-за богатого разнообразного видового состава микрофлоры процесс минерализации растительных остатков проходит без отрицательных последствий. Следовательно, применение препаратов, содержащих микроорганизмы-деструкторы, может не только