УДК 631.81: 633.853.494(324)

ВЛИЯНИЕ ДОЗ ВНЕСЕНИЯ МИКРОУДОБРЕНИЯ МИКРОСИЛ-БОР НА УРОЖАЙНОСТЬ МАСЛОСЕМЯН ОЗИМОГО РАПСА

Ф. Ф. Седляр

УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь (Республика Беларусь, 230008,

г. Гродно, ул. Терешковой, 28; e-mail: ggau@ ggau.by)

Ключевые слова: озимый рапс, микроудобрение МикроСил-Бор, количество стручков, количество семян в стручке, масса 1000 семян, биологическая урожайность.

Аннотация. Изучено влияние микроудобрения МикроСил-Бор на элементы структуры урожая озимого рапса. Микроудобрение МикроСил-Бор при внесении в два срока по 0,2 л/га в фазу начала бутонизации и в фазу полной бутонизации увеличивал по сравнению с первым вариантом массу 1000 семян на 0,30-0,32 г, количество стручков на растении на 4-6 ит., массу семян с одного растения на 1,98-3,28 г, биологическую урожайность маслосемян на 4,0-5,4 ц/га. В среднем за три года исследований оптимальным оказался вариант с внесением микроудобрения МикроСил-Бор в два срока по 0,2 л/га, обеспечивший урожайность маслосемян 47,5 ц/га, прибавку к контролю 3,8 ц/га, или 8,9 %.

INFLUENCE OF DOSES OF APPLICATION OF MICROSIL-BORON MICROFERTILIZER ON THE YIELD OF WINTER RAPE OILSEEDS

F. F. Sedlyar

EI «Grodno state agrarian university» Grodno, Republic of Belarus (Republic of Belarus, 230008, Grodno, 28 Tereshkova st.; e-mail: ggau@ggau.by)

Key words: winter rapeseed, MicroSil-Boron microfertilizer, number of pods, number of seeds in a pod, weight of 1000 seeds, biological yield.

Summary. The influence of MicroSil-Boron microfertilizer on the elements of the structure of the winter rapeseed crop was studied. Microfertilizer MikroSil-Boron, when applied in two periods of 0.2 l/ha in the phase of beginning budding and in the phase of full budding, compared to the first option, increased the weight of 1000 seeds by 0,30-0,32 g, the number of pods by per plant by 4-6 pcs., seed weight per plant by 1,98-3,28 g, biological yield of oil seeds by 4,0-5,4 c/ha. On average, over three years of research, the optimal option turned out to be the application of MicroSil-Boron microfertilizer in two periods of 0,2 l/ha, which ensured an oilseed yield of 47,5 c/ha, an increase over the control of 3,8 c/ha or 8,9 %.

(Поступила в редакцию 31.05.2024 г.)

Введение. Рапс является основной белково-масличной культурой многих государств мира и Беларуси. Рапсовое масло является диетическим по составу жирных кислот и витаминов. Рапс оказывает благоприятное влияние на экологическое состояние окружающей среды. С одного гектара рапса выделяется в среднем 10,6 млн. литров кислорода, что в 2,5 раза больше, чем с одного гектара леса. После уборки рапса остается 60 ц/га корневых остатков, что в 6-7 раз больше, чем у зерновых культур. и в два раза больше, чем у клевера. Рапс является благоприятным предшественником для ячменя, озимой и яровой пшеницы, прерывает распространение корневых гнилей и снижает поражаемость этих культур другими заболеваниями [3].

В повышении урожайности маслосемян озимого рапса важная роль принадлежит микроэлементам. Для оптимального роста и развития растений наряду с главными элементами питания необходимы микроэлементы. Однако нужны они растениям только в небольших количествах. Потребность в микроэлементах растет в связи с применением высококонцентрированных макроудобрений, которые лучше очищены и почти не содержат примесей микроэлементов [1, 2]. Микроудобрение МикроСил-Бор (Азот 50 г/л, Бор 150 г/л, Экосил

Микроудобрение МикроСил-Бор (Азот 50 г/л, Бор 150 г/л, Экосил 30 мл/л) представляет собой водорастворимый концентрат, приготовленный на основе хелатов микроэлементов в органоминеральной форме с добавлением регулятора роста Экосил. Разработан РУП «Институт почвоведения и агрохимии» совместно с РУП «Институт льна» в рамках государственной программы по импортозамещению.

Экосил – регулятор роста с фунгицидной активностью растительного происхождения, получаемый из хвои пихты сибирской. Экосил вызывает активацию генетических процессов, активацию генов стрессоустойчивости, синтез веществ, функцией которых является организация связей между факторами внешней среды и активностью отдельных генов или их блоков.

Микроудобрение МикроСил-Бор в композиционном составе для предпосевной обработки семян и в некорневые подкормки в соответствии с биологическими потребностями сельскохозяйственных культур оказывает комплексное стимулирующее воздействие на ростовые процессы, снижает заболеваемость растений, способствует росту урожайности и качества растениеводческой продукции.

Существенным преимуществом удобрения в сравнении со стандартно применяемыми в РБ составами микроудобрений, в которых в качестве хелатора использованы синтетические кислоты типа ЭДТА, ОЭДФ, НТФ и др., является отсутствие фитотоксичности и

пестицидной токсичности в отношении растений, почвенной биоты, человека и млекопитающих.

Цель работы — изучить влияние доз внесения микроудобрения МикроСил-Бор на элементы структуры урожая и урожайность маслосемян озимого рапса.

Материал и методика исследований. Исследования по изучению влияния доз и сроков внесения микроудобрения МикроСил-Бор на элементы структуры урожая и урожайность маслосемян озимого рапса в 2021-2022 гг. были проведены в почвенно-климатических условиях УО СПК «Путришки» Гродненского района Республики Беларусь. Почва опытного участка дерново-подзолистая легкосуглинистая, подстилаемая с глубины 0,7-1,0 м моренным суглинком. Агрохимические показатели почвы следующие: рН КС1 – 6,0-6,3, содержание Р₂О₅ – 216-228 мг/кг почвы, $K_2O - 282-291$, серы 4,5-5,0, бора – 0,40-0,43, меди -1,3, цинка -2,5, марганца -1,3 мг/кг почвы, гумуса -2,35-2,46 %. Мощность пахотного слоя почвы – 24-25 см. Гибрид озимого рапса – НК Текник (Syngenta). Норма высева – 0,6 млн. всхожих семян на 1 га. Учетная площадь делянки – 20 м², общая площадь делянки – 36 м², повторность трехкратная. Способ посева рядовой, с шириной междурядий 12,5 см. Предшественник – яровой ячмень. Экспериментальные данные обрабатывали методом дисперсионного анализа в изложении Б.А. Доспехова. Микроудобрение МикроСил-Бор вносили в два срока: в начале фазы бутонизации и в фазе полной бутонизации.

Схема опыта:

Вариант $1 - N_{30}P_{70}K_{120} + N_{120} + N_{80} - \Phi$ он.

Вариант 2 — Фон + МикроСил-Бор — 0.10 + 0.10 л/га.

Вариант 3 — Фон + МикроСил-Бор — 0,15 + 0,15 л/га.

Вариант 4 — Фон + МикроСил-Бор — 0.20 + 0.20 л/га.

Вариант 5 — Фон + МикроСил-Бор — 0.25 + 0.25 л/га.

Погодные условия вегетационных периодов озимого рапса в годы исследований складывались неоднозначно. Зимний период во все годы проведения исследований характеризовался оптимальным температурным режимом, обеспечившим хорошую перезимовку озимого рапса. Сумма выпавших атмосферных осадков в апреле, мае, июне и июле 2021 г. составила соответственно 91, 169, 56 и 133 % от среднемноголетних значений. Погодные условия 2022 г. были вполне благоприятными для роста и развития растений озимого рапса и формирования хорошего урожая маслосемян. Наибольшая сумма осадков в 2022 году отмечена в июле — 104,4 мм, или 117 % климатической нормы за месяц. Самым сухим месяцем был март, за который в среднем выпало 6,4 мм осадков, что составило 17 % климатической нормы. Март 2022 года

стал самым засушливым. По отношению к норме самым влажным месяцем года стал апрель — выпало 86 мм осадков, или 222 % климатической нормы. Апрель 2022 г. стал самым влажным.

Наиболее благоприятным для формирования высокой урожайности рапса оказался 2023 г. Зимний сезон 2022/2023 оказался самым влажным в году. За сезон выпало 187 мм осадков, или 152 % климатической нормы. Весной выпало 121 мм, или 86 % сезонной нормы. Количество осадков за летний период соответствовало климатической норме, хотя в первые два месяца отмечался недобор осадков.

Результаты исследований и их обсуждение. В 2021 году микроудобрение МикроСил-Бор способствовало увеличению количества стручков на одном растении, количества семян в стручке, массы 1000 семян, массы семян с одного растения. Так, в четвертом варианте с внесением микроудобрения МикроСил-Бор в два срока в дозах по 0,20 л/га на одном растении в среднем насчитывалось 140 стручков, что на 8 стручков больше, чем в контрольном варианте. В пятом варианте при внесении изучаемого удобрения в два срока в дозах от 0,25 + 0,25 л/га на одном растении в среднем насчитывалось 142 стручка. В четвертом и пятом вариантах количество семян в стручке возросло до 24,7-24,8 шт., превысив контрольный вариант на 2,4-2,5 шт. Средняя масса 1000 семян озимого рапса в четвертом и пятом вариантах по сравнению с контролем увеличилась на 0,30-0,32 г и составила 4,49-4,51 г, масса семян с одного растения достигла 15,65-15,71 г, превысив контрольный вариант на 3,28-3,34 г. Максимальная биологическая урожайность маслосемян озимого рапса отмечена в четвертомпятом вариантах и находилась на одном уровне 48,5-48,7 ц/га, а на контроле 43,3 ц/га (таблица 1).

В 2022 году максимальная биологическая урожайность маслосемян соответственно 43,9 и 43,8 ц/га получена в четвертом и пятом вариантах, превысив контрольный вариант на 4,0-3,9 ц/га. В четвертом и пятом вариантах с внесением микроудобрения МикроСил-Бор в два срока по 0,20-0,25 л/га количество стручков на растении увеличилось до 101-102 шт., количество семян в стручке возросло до 25,9-26,2 шт., масса 1000 семян увеличилась до 4,20-4,22 г, масса семян с одного растения достигла 10,95-11,26 г, превысив контрольный вариант на 1,67-1,98 г.

Таблица 1 — Элементы структуры урожая и биологическая урожайность озимого рапса в зависимости от доз внесения микроудобрения МикроСил-Бор

Вариант	Количество	1 1		Масса семян, г		Биологическая					
Бариант				1000	с 1 раст.	урожайность,					
	шт./м кв.	на 1 раст., шт.	стручке, шт.		c i paci.	урожанность,					
	ш1./М КВ.	на граст, шт.	2021 г.	IIIT.		щта					
1. Фон 35 132 22,3 4,19 12,37 43,3											
	33	132	22,3	4,19	12,57	43,3					
2. МикроСил-	24	122	22.7	4.21	12.04	44.0					
Бор 0,10 +	34	132	22,7	4,31	12,94	44,0					
0,10 л/га											
3. МикроСил-	22	125	22.0	4.40	12.70	45.0					
Бор 0,15 +	33	135	22,9	4,42	13,70	45,2					
0,15 л/га											
4. МикроСил-	21	1.40	24.0	4.51	15.65	40.5					
Бор 0,20 +	31	140	24,8	4,51	15,65	48,5					
0,20 л/га											
5. МикроСил-	21	1.40	247	4.40	15 71	40.7					
Бор 0,25 +	31	142	24,7	4,49	15,71	48,7					
0,25 л/га											
1.4	10	0.6	2022 г.	4.01	0.20	20.0					
1. Фон	43	96	24,2	4,01	9,28	39,9					
2. МикроСил-		0.5		4.05	0.54	40.5					
Бор 0,10 +	42	96	24,7	4,07	9,64	40,5					
0,10 л/га											
3. МикроСил-	40	22	27.0		40.00	40.0					
Бор 0,15 +	40	99	25,0	4,15	10,23	40,9					
0,15 л/га											
4. МикроСил-	20.	100	262	4.00	11.06	12.0					
Бор 0,20 +	39	102	26,2	4,22	11,26	43,9					
0,20 л/га											
5. МикроСил-		404	27.0	4.20	4005	42.0					
Бор 0,25 +	40	101	25,9	4,20	10,95	43,8					
0,25 л/га		7	2022								
1. 4	20	155	2023 г.	4.10	10.00	52.2					
1. Фон	39	155	20,9	4,12	13,38	52,2					
2. МикроСил-	40	150	21.2	4 4 4	10.00	50.0					
Бор 0,10 +	40	150	21,3	4,14	13,30	53,2					
0,10 л/га											
3. МикроСил-	1	4.55			40	.					
Бор 0,15 +	41	152	21,1	4,15	13,27	54,4					
0,15 л/га											
4. МикроСил-		4.50	20.5		4.5						
Бор 0,20 +	37	159	23,3	4,21	15,57	57,6					
0,20 л/га											
5. МикроСил-		4	20.0	4.50	4.5.						
Бор 0,25 +	37	160	23,0	4,20	15,54	57,5					
0,25 л/га											

В 2023 году максимальная биологическая урожайность маслосемян соответственно 57,6 и 57,5 ц/га получена в четвертом и пятом вариантах, превысив контрольный вариант на 5,4-5,3 ц/га. В четвертом и пятом вариантах с внесением микроудобрения МикроСил-Бор в два срока по 0,20-0,25 л/га количество стручков на растении увеличилось до 159-160 шт., количество семян в стручке возросло до 23,0-23,3 шт., масса 1000 семян увеличилась до 4,20-4,21 г, масса семян с одного растения достигла 15,54-15,57 г, превысив контрольный вариант на 2,19-2,16 г.

Таблица 2 — Урожайность маслосемян озимого рапса в зависимости от доз внесения микроудобрения МикроСил-Бор, ц/га

Вариант	Урожайность по го		по го-	Среднее	Прибавка к	
	дам				контролю	
	2021	2022	2023		т/га	%
1. Фон	40,7	37,9	50,1	42,9	-	-
2. МикроСил-Бор 0,10 + 0,10 л/га	41,4	38,5	51,1	43,7	0,8	1,9
3. МикроСил-Бор 0,15 + 0,15 л/га	42,5	38,9	52,2	44,5	1,6	3,7
4. МикроСил-Бор 0,20 + 0,20 л/га	45,6	41,7	55,3	47,5	3,8	8,9
 МикроСил-Бор 0,25 + 0,25 л/га 	45,8	41,6	55,2	47,5	3,8	8,9
HCP 05	2,3	1,5	1,6			

Исследованиями по изучению влияния доз и сроков внесения микроудобрения МикроСил-Бор на урожайность маслосемян озимого рапса установлено, что в 2021 г. оптимальным оказался четвертый вариант с внесением микроудобрения в два срока по 0,2 л/га, обеспечивший урожайность 45,6 ц/га, прибавка к контролю составила 4,9 ц/га, или 10,7 %. В пятом варианте с внесением удобрения в дозах по 0,25 л/га в два срока достоверной прибавки урожайности маслосемян не отмечено (таблица 2). Аналогичная закономерность проявилась в 2022 г. Следует отметить, что в 2022 г. в оптимальном варианте с внесением микроудобрения МикроСил-Бор в два срока по 0,2 л/га урожайность маслосемян по сравнению аналогичным вариантом 2021 г. уменьшилась на 3,9 ц/га и составила 41,7 ц/га. Максимальная урожайность маслосемян озимого рапса за три года исследований 55,3 ц/га получена в 2023 году в четвертом варианте.

В среднем за три года исследований оптимальным оказался вариант с внесением микроудобрения МикроСил-Бор в два срока по 0,2 л/га, обеспечивший урожайность маслосемян 47,5 ц/га, прибавку к контролю 3,8 ц/га, или 8,9 %.

Заключение.

1. Микроудобрение МикроСил-Бор при внесении в два срока по 0,2 л/га в фазу начала бутонизации и в фазу полной бутонизации уве-

личивало по сравнению с первым вариантом количество стручков на растении на 4-6 шт., массу 1000 семян 0,3-0,32 г, массу семян с одного растения на 1,98-3,28 г, биологическую урожайность маслосемян на 4,0-5,4 п/га.

2. В среднем за три года исследований оптимальным оказался четвертый вариант с внесением микроудобрения МикроСил-Бор в дозах по $0.2~\rm n/$ га в фазу начала бутонизации и в фазу полной бутонизации, обеспечивший урожайность маслосемян $47.5~\rm n/$ га, прибавку к контролю $3.8~\rm n/$ га, или $8.9~\rm \%$.

ЛИТЕРАТУРА

- 1. Лапа, В. В. Использование жидких удобрений Адоб, Басфолиар и Солюбор ДФ в посевах зерновых культур, рапса и льна / В. В. Лапа, В. В. Рак // Белорусское сельское хозяйство: Ежемес. науч.-произ. журнал для работников АПК. 2007. № 5. С. 37.
- 2. Песковский, Г. А. Эффективность применения некорневых удобрений Эколист на рапсе / Г. А. Песковский // Белорусское сельское хозяйство: Ежемес. науч.-произ. журнал для работников АПК. 2008. N 3. С. 60-62.
- 3. Пилюк, Я. Э. Научные основы селекции и технологии возделывания рапса в Беларуси. Диссертация на соискание ученой степени доктора сельскохозяйственных наук в виде научного доклада по специальностям 06.01.05 – селекция и семеноводство сельскохозяйственных растений и 06.01.09 – растениеводство. Жодино, 2021.

УДК 632.951.02:632.768.12(476.7)

БИОЛОГИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ГЕРБИЦИДА СТАТУС ГРАНД ПРИ ВОЗДЕЛЫВАНИИ ЯРОВОГО ЯЧМЕНЯ В УСЛОВИЯХ УП «АГРОКОМБИНАТ «ЖДАНОВИЧИ» МИНСКОЙ ОБЛАСТИ

Е. В. Стрелкова

УО «Белорусский национальный технический университет»

- г. Минск, Республика Беларусь (Республика Беларусь, 220000,
- г. Минск, пр. Независимости 65; e-mail: elena.strelcova2011@mail.ru)

Ключевые слова: гербицид, яровой ячмень, структура засоренности, биологическая эффективность.

Аннотация. В статье рассмотрен вопрос совершенствования элемента технологии возделывания ярового ячменя при внесении гербицида против однолетних и многолетних двудольных сорняков в посевах культуры. Дан анализ структуры засоренности полей под посевом ярового ячменя. Дана оценка биологической эффективности гербицида Статус гранд на яровом ячмене в условиях центральной части Беларуси.