2. Лукьянюк, Н. А. Особенности формирования сорного ценоза в посевах сахарной свеклы Республики Беларусь / Н. А. Лукьянюк // Защита растений: сборник научных трудов / РУП «Научно-практический центр НАН Беларуси по земледелию», Республиканское научное дочернее унитарное предприятие «Институт защиты растений». — Минск: Колорград, 2020. — Вып. 44. — С. 35-43.

УДК 631.3 (075.8)

ВОССТАНОВЛЕНИЕ ПРОДУКТИВНОСТИ СЕЯНЫХ ТРАВОСТОЕВ ПУТЕМ ПОДСЕВА ТРАВ

Эбертс А. А., Бычек П. Н., Филиппов А. И., Цыбульский Г. С. УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

Сеяные травостои и естественные луга являются источником грубых кормов, которые доминируют в кормовом рационе КРС. С течением времени продуктивность сеяных травостоев падает. Темпы снижения продуктивности зависят от способов обработки травостоев, соблюдения технологических регламентов его использования и видов высеянных трав. С течением времени урожайность травостоя снижается и вплотную приближается к уровню целинных земель, уже через несколько лет использования наблюдается резкое снижение урожайности [1]. Выходом может стать улучшение травостоев — проведение комплекса мероприятий по обновлению травяного покрова.

Поверхностное улучшение лугов и пастбищ предусматривает внесение удобрений и подсев трав, чем достигается улучшение видового состава лугопастбищных угодий. Естественная растительность при этом сохраняется полностью или частично, но повышается ее урожайность и кормовые качества.

Успех подсева семян трав, независимо от типа использованной машины, зависит от способности проростков укорениться в условиях конкуренции со старой дерниной за свет, питательные вещества и влагу.

После появления всходов и использования ими имевшихся в семенах ресурсов, синтез углеводов зависит от достаточного обеспечения светом. В случае слишком глубокой заделки семян снижается эффективность укоренения всходов.

Ввиду сильной конкуренции с имеющимся травостоем в отношении света необходимо принять меры для обеспечения всходам наилучших условий для выживания: обрабатываемая под подсев полоса должна иметь четко выраженные границы, корневые системы имеющегося травостоя должны максимально уничтожаться. Время подсева следует выбирать так, чтобы оно не совпадало с периодом максимального

роста растений существующего травостоя и обеспечивало подходящие условия для прорастания и начального роста подсеваемых трав.

Проведенный анализ литературных источников показал, что в настоящее время используются комбинированные машины для полосного подсева семян трав [2]. К недостаткам таких машин можно отнести низкую производительность, высокую энергоемкость, относительно невысокую всхожесть семян, высеянных полосами, что объясняется отсутствием системных исследований по оптимизации конструктивно-режимных параметров машин для подсева трав в дернину.

В наших предыдущих исследованиях получены теоретические обоснования конструкции каткового сошника, выведена формула для определения глубины его хода в зависимости от диаметра, ширины, его массы и твердости почвы [3, 4].

Приведены теоретические предпосылки и конструкторские предложения по обоснованию трех принципиально новых машин по полосному подсеву семян трав в дернину:

- машина, работающая с присыпкой семян в бороздах мульчирующим составом;
- машина на базе клинчатых колес кольчато-зубчатого катка ККН-2,8, фрезерного культиватора РФ-4 и посевных секций агрегата АПП-4;
- электрифицированная машина, имеющая рабочие органы в виде вертикальной фрезы (привод рабочих органов осуществляется электродвигателем, с питанием от электрогенератора с приводом от ВОМ трактора).

Электрифицированная машина имеет некоторые существенные преимущества: возможность плавного и бесступенчатого регулирования частоты вращения рабочих органов в зависимости от различных параметров (скорость движения МТА, гранулометрический состав почвы и др.).

По результатам исследований обоснованы параметры и создан опытный образец машины для полосного подсева семян трав, обеспечивающий качественное выполнение технологического процесса поверхностного улучшения имеющегося травостоя [5].

Новизна примененных технических решений подтверждается пятью патентами на изобретение и пятью патентами на полезную модель Республики Беларусь.

По результатам проведенных исследований получены патенты Республики Беларусь на полезные модели: № 8451, 2012 г. – «Посевная секция»; № 8152, 2012 г. – «Машина для полосного подсева семян трав в дернину»; № 8706, 2012 г. – «Агрегат для полосного подсева трав в

дернину»; № 9634, 2013 г. – «Электрифицированная машина для полосного подсева семян трав в дернину», а также № 9276, 2013 г. – «Прибор для контроля качественных показателей предпосевной обработки почвы». Получены патенты на изобретения: № 18352, 2014 г. – Машина для полосного подсева трав в дернину, навешиваемая на трактор»; № 18983, 2015 г. – «Посевная секция».

ЛИТЕРАТУРА

- 1. Азаренко, В. В. О снижении затрат ресурсов при улучшении лугопастбищных угодий / В. В. Азаренко // Техника в сельском хозяйстве. Минск, 2000. № 6. С. 6-7.
- 2. Эбертс, А. А. К обоснованию необходимости модернизации машины для полосного подсева трав в дернину / А. А. Эбертс, Э. В. Заяц // Материалы XIII МНПК «Современные технологии СПК», Т.1 Гродно, 2010. С. 229-231.
- 3. Оценка глубины заделки семян трав при их подсеве в дернину / А. А. Эбертс [и др.] // Современные технологии СХП. Материалы XV МНПК. Ч. 1. Гродно, 2011. С. 29-31.
- 4. Эбертс, А. А. Машина для полосного подсева трав в дернину / А. А. Эбертс, С. Н. Ладутько, Э. В. Заяц // Современные технологии СХП. Материалы XV МНПК. Ч. $1. \Gamma$ родно, 2011. C. 57-59.
- 5. Электрифицированная почвообрабатывающе-посевная машина / А. А. Эбертс [и др.] // Инновационные направления развития технологий и технических средств механизации сельского хозяйства. Материалы МНПК, посвященной 100-летию кафедры сельскохозяйственных машин агроинженерного факультета Воронежского государственного аграрного университета имени императора Петра I (Россия. Воронеж, 25 декабря 2015 г.). Ч. 2. Воронеж: ФГБОУ «Воронежский ГАУ», 2015. С. 284-288.

УДК 638.132:632.954

ПРИМЕНЕНИЕ ГЕРБИЦИДА ЭГИДА В ПОСЕВАХ ФАЦЕЛИИ ПИЖМОЛИСТНОЙ

Якимович Е. А.

РУП «Институт защиты растений»

аг. Прилуки, Минский район, Республика Беларусь

Возделывание медоносных культур можно совмещать не только с получением товарного меда, но и семян, которые после доработки их до соответствующих стандартов можно реализовывать. Фацелия пижмолистная (Phacelia tanacetifolia Benth.) относится к данной группе, поскольку ее семена востребованы на рынке по высокой цене.

Выращивание фацелии на семена всегда имеет большую проблему с засоренностью, поскольку в годы с холодной весной при раннем посеве фацелия может погибать из-за высокой засоренности [1], а в семенном ворохе семена фацелии трудноотделимы от мелких семян различных сорных растений [2].

При невысокой исходной засоренности медоносная культура довольно конкурентоспособна (снижение надземной массы культуры в