ЭФФЕКТИВНОСТЬ ПРОТИВОЗЛАКОВОГО ГЕРБИЦИДА ПРИ ОБРАБОТКЕ ПОСАДОК КАРТОФЕЛЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ

Гончарук Е. С., Хох Н. А., Осовик М. О.

РУП «Гродненский зональный институт растениеводства НАН Беларуси» г. Щучин, Республика Беларусь

Картофель — одна из культур, которая широко возделывается во всем мире. В современных условиях повышение эффективности отрасли картофелеводства возможно лишь на основе существенного увеличения урожайности. Важнейшим резервом повышения продуктивности является борьба с сорняками [1]. Основным методом внесения средств химизации в настоящее время является наземное опрыскивание. Новое направление в защите растений — применение беспилотных летательных аппаратов (БПЛА), что дает возможность работы при избыточных осадках и позволяет провести защитные мероприятия в оптимальные сроки. Кроме того, существует возможность проводить дифференцированные обработки с учетом очагов засоренности.

Для проведения обработки посевов требуется определенная ветровая обстановка, поэтому защитные мероприятия приходится переносить на вечерние и утренние часы, что снижает производительность труда. Беспилотная авиация способствует беспрепятственной работе ночью, что не только позволяет соблюдать регламент применения средств химизации относительно скорости ветра и температуры, но и работать в отсутствии пчел и других полезных насекомых.

Целью исследования являлось определение нормативных параметров создания полетного задания для беспилотных летательных аппаратов при защите картофеля от злаковых сорняков.

Место проведения исследований — опытное поле РУП «Гродненский зональный институт растениеводства НАН Беларуси» на среднераннем сорте Бриз. Почва опытного участка дерново-подзолистая супесчаная, подстилаемая с глубины 0,7 м мореным суглинком. Агрохимические показатели пахотного слоя почвы следующие: рН — 5,6-6,1; содержание подвижного фосфора — 256-291, обменного калия — 158-262 мг/кг почвы, гумуса — 1,25-1,37 %. Предшественник — многолетние травы.

В борьбе со злаковыми сорняками (просо куриное, пырей ползучий) применяли гербицид Миура в минимально и максимально зарегистрированных дозах наземным опрыскивателем ОП-2000 и беспилотным летательным аппаратом (БПЛА).

Учет засоренности по вариантам опыта до химической прополки показал, что средняя засоренность просо куриным составила 23,7-26,7 шт./м², пыреем ползучим — 39,8-77,6 стеблей/м². Эффективность химической прополки определялась спустя 30 дней после внесения гербицида, к этому сроку численность сорняков в контроле была следующей: просо куриное — 58~ шт./м², пырей ползучий — 116~ стеблей/м².

Эффективность гербицида Миура при внесении с помощью беспилотного летательного аппарата определялась нормой внесения гербицида и параметрами настройки агродрона. В борьбе с просо куриным его гибель колебалась в пределах 92,2-100 %, с пыреем ползучим находилась в пределах 53,4-100,0 %. Продуктивность растений картофеля в этих вариантах получена на уровне 50,1-59,4 т/га и в сопоставимых вариантах близка показателям с наземным опрыскиванием (53,8-57,4 т/га). Прибавка к контролю варьировала в пределах 1,7-11,0 т/га.

Максимальная эффективность была получена при внесении противозлакового гербицида с нормой расхода рабочего раствора 15-20 л/га и размере капли 50-150 мкм. При этих параметрах настройки БПЛА биологическая и хозяйственная эффективность не уступала наземному опрыскиванию.

ЛИТЕРАТУРА

1. Иванюк, В. Г. Защита картофеля от болезней, вредителей и сорняков / В. Г. Иванюк, С. А. Банадысев, Г. К. Журомский. – Минск, 2012.-695 с.

УДК 635.21:632

ЭФФЕКТИВНОСТЬ ИНСЕКТИЦИДНОЙ ОБРАБОТКИ ПРИ РАБОТЕ НА ПОСАДКАХ КАРТОФЕЛЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ

Гончарук Е. С., Хох Н. А., Шкляр И. И.

РУП «Гродненский зональный институт растениеводства НАН Беларуси» г. Щучин, Республика Беларусь

В последние годы беспилотные летательные аппараты (БПЛА) все чаще стали применяться в сельском хозяйстве для внесения средств защиты растений. На картофеле отмечено более 60 видов вредителей как специфичных для культуры, так и многоядных, наиболее вредоносным из которых является колорадский жук. По данным некоторых ученых повреждения его личинками могут вызывать снижение урожайности на 20-50~% и более [1,2].