УДК 636.2.034

МОЛОЧНАЯ ПРОДУКТИВНОСТЬ КОРОВ БЕЛОРУССКОЙ ЧЕРНО-ПЕСТРОЙ ПОРОДЫ С РАЗЛИЧНЫМИ ГЕНОТИПАМИ ПО ГЕНУ ЛАКТОФЕРРИНА (LTF) В ЗАВИСИМОСТИ ОТ ЛИНЕЙНОЙ ПРИНАДЛЕЖНОСТИ

Ситько А. А., Пешко В. В., Епишко О. А. УО «Гродненский ГАУ», г. Гродно, Беларусь

Аннотация. Установлен полиморфизм гена лактоферрина (LTF) в популяции коров белорусской черно-пестрой породы. Выявлены генотипы LTF^{AA} и LTF^{AB}. Определена частота встречаемости генотипов исследуемого гена у коров с учетом их линейной принадлежности. Частота встречаемости аллелей A и B в среднем по линиям была в диапазоне 0,625-0,955 и 0,045-0,375. Проведен анализ молочной продуктивности животных различной линейной принадлежности с разными генотипами лактоферрина (LTF).

Ключевые слова: лактоферрин, молочная продуктивность, соматические клетки, крупный рогатый скот.

Введение. Сельское хозяйство в Республике Беларусь является одной из динамично развивающихся отраслей производства. Инновационное развитие животноводства особенно перспективно, так как именно в этой отрасли производится более 65 % стоимости валовой продукции сельского хозяйства Республики Беларусь [6].

В молочном скотоводстве результативность селекционно-племенной работы находится в зависимости от различных факторов: как технологических (условия содержания, оптимальное кормление), так и генетических (получение животных с высоким наследственным потенциалом). Таким образом, в племенной работе должны находить максимальное применение результаты достижений в области генетики и биотехнологии животных.

За последние годы уровень продуктивности молочного крупного рогатого скота в стране увеличился почти вдвое, вследствие чего на первое место выходят проблемы резистентности животных к заболеваниям молочной железы. Ежегодно в хозяйствах страны по причинам, связанным с болезнями вымени, выбраковывается до 17 % животных [2].

Научные исследования показывают, что в системе мер борьбы с маститом важное место должен занимать метод ДНК-технологии, направленный на поиск маркеров генетической устойчивости животных к данному заболеванию. Актуальным направлением в селекции крупного рогатого скота является изучение ассоциации генетических маркеров с хозяйственно-полезными признаками и резистентностью животных к воздействию факторов внешней среды и использовании маркерных генов в маркерно-направленной селекции скота (marker-assisted selection - MAS) [7].

Устойчивость крупного рогатого скота к маститу, основанная на их генетической предрасположенности, раскрывает максимальные возможности по формированию здорового стада. Для этого необходимо своевременно выявлять животных резистентных к маститу, в том числе в зависимости от породной и линейной принадлежности. Различные данные говорят о том, что наследственные факторы восприимчивости к маститу в пределах одной породы составляют от 12% до 20%. [4, 5, 6].

Результаты проведенных мировых исследований подтвердили гипотезы, о том, что ген лактоферрина может служить потенциальным генетическим маркером у крупного рогатого скота, связанным с устойчивостью к маститу у молочных коров. Этот критерий также возможно использовать при отборе и подборе родительских пар в процессе селекционно-племенной работы [9]. Лактоферрин является одноцепочечным малым гликопротеином молока,

содержащим приблизительно 690 аминокислот и молекулярный вес 77 кДа. Ген LTF локализован на хромосоме 22q24 и состоит из 17 экзонов и распространяется примерно на 34,5 т.п.н. геномной ДНК [1].

Ученые Шамсиева Л.В., Зиннатов Ф., и другие, проводили исследования по определению линейной принадлежности крупного рогатого скота с различными генотипами гена лактоферрина. [5,8]. Таким образом, изучение влияния данного гена на хозяйственно-полезные признаки в разрезе линейной принадлежности белорусской черно-пестрой породы носит прикладной характер в совершенствовании методов селекции крупного рогатого скота.

Цель работы: изучить молочную продуктивность коров белорусской черно-пестрой породы с различными генотипами по гену лактоферрина в зависимости от их линейной принадлежности.

Материал и методика исследований. Объект наших исследований представляет собой генетический материал (ушной выщип) коров белорусской черно-пестрой породы, содержащихся в СПК имени И.П. Сенько Гродненского района (n=210). Исследования по определению аллелей и генотипов опытных животных по генам LTF проводились в отраслевой НИЛ «ДНК-технологий» УО «Гродненский государственный аграрный университет».

ДНК-диагностику генотипов генов лактоферрина проводили методами полимеразной цепной реакции (ПЦР) и полиморфизма длин рестрикционных фрагментов (ПДРФ). Ядерную ДНК выделяли при помощи перхлоратного метода.

Для амплификации участка гена LTF использовали следующие праймеры:

-F 5' - GCCTCATGACAACTCCCACAC- 3';

-R: 5'- CAGGTTGACACATCGGTTGAC-3'.

ПЦР-программа включала в себя следующий режим: «горячий старт» при 94 $^{\circ}$ C в течение 5 минут, 35 циклов: денатурация при 94 $^{\circ}$ C – 45 сек, отжиг праймеров при 62 $^{\circ}$ C – 45 сек, синтез при температуре 72 $^{\circ}$ C – 45 сек; далее элонгация при 72 $^{\circ}$ C – 5 минут.

Реакционная смесь состояла из 10X ПЦР буфера, MgCl₂, прямого и обратного праймера, dNTP, Таq-полимеразы, дистиллированной воды и исследуемого ДНК.

Для генотипирования по локусу лактоферрина использовали эндонуклеазу EcoRI, которая имеет сайт рестрикции GAATC/C и продукт амплификации с длиной 301 п.н. Рестрикция проводилась при температуре 37 $^{\circ}$ C в течение 16 часов. При расщеплении продукта амплификации ПЦР с помощью эндонуклеазы EcoRI были идентифицированы следующие генотипы: LTF^{AA} – 300 п.н., LTF^{AB} – 300, 200, 100 п.н.

Частоту встречаемости аллелей по гену лактоферрина рассчитывали по формуле 1 по Е.К. Меркурьевой [3].

$$pA = 2n AA + n AB / 2N$$

 $qB = 2n BB + n AB / 2N,$ (1)

гле:

рА – частота аллеля А;

qB – аллель В;

n – количество гомозиготных или гетерозиготных особей;

N – общая численность обследованных животных;

2N – число аллелей данного двухаллельного локуса в обследованной популяции.

Линейную принадлежность животных определяли по селекционно-племенным карточкам хозяйства. Молочную продуктивность определяли при помощи проведения контрольных доений различных возрастных групп подопытных животных. В обработку включали показатели по тем

животным, которые имели продолжительность лактации не менее 240 дней, а возраст при первом отеле составлял 26-30 месяцев.

У животных с различными генотипами по гену лактоферрина учитывали удой, содержание жира и белка, выход молочного жира и белка за 305 дней лактации, а также содержание соматических клеток в молоке. Селекционно-генетические параметры основных хозяйственно-полезных признаков определяли методами биологической статистики в описании Н.А. Плохинского, при этом используя компьютерную программу Microsoft Excel.

Результаты исследований и их обсуждение. В ходе проведенного анализа было установлено, что исследуемые животные принадлежат к 6 линиям: Рефлекшн Соверинга 198998, Вис Айдеала 933122, Монтвик Чифтейна 95679, Пабст Говернера 882933, Силинг Трайджун Рокита 252803, Хильтьес Адема 37910.

Наибольшее количество животных представлено в линиях Рефлекшн Соверинга 198998 - 86 голов (40,95 %), и Вис Айдеала 933122 - 81 голова (38,58 %). Наименьшее количество голов было представлено линиями Силинг Трайджун Рокита 252803 - 11 голов (5,24 %), Пабст Говернера 882933 - 9 голов (4,28 %)и Хильтьес Адема 37910 - 2 головы (0,95 %).

В исследуемой популяции по гену лактоферрина были выявлены генотипы LTF^{AA} и LTF^{AB} , генотип LTF^{BB} выявлен не был. Проанализировав полученные данные, было установлено, что генотип LTF^{AA} преобладал в линиях Рефлекшн Соверинга 198998 (60,5 %), Вис Айдеала 933122 (72,8 %), Силинг Трайджун Рокита 252803 (91 %). Преобладание генотипа LTF^{AB} наблюдалось в линиях Пабст Говернера 882933 (66,7 %) и Монтвик Чифтейна 95679 (57,2%).

Частота встречаемости аллеля А по гену лактоферрина находилась в диапазоне 0,625-0,964. Наблюдалось преимущество аллеля А над аллелем В у животных всех линий. При этом наибольшая встречаемость аллеля А наблюдалась у животных линии Вис Айдеала 933122 и составляла 0,964, а наименьшая - в линии Пабст Говернера 882933 (0,625) (таблица 1).

Таблица 1 — Частота встречаемости генотипов и аллелей гена лактоферрина в разрезе линейной принадлежности.

		припадле			Частота аллелей		
	Количество животных	%	Бстреча	емость гег (голов)			
Линия			LTF ^{AA}	LTF ^{AB}	LTF ^{BB}	A	В
Рефлекшн Соверинга 198998	86	40,95	52	34	0	0,802	0,198
Вис Айдеала 933122	81	38,58	59	22	0	0,964	0,136
Силинг Трайджун Рокита 252803	11	5,24	10	1	0	0,955	0,045
Пабст Говернера 882933	9	4,28	3	6	0	0,625	0,375
Хильтьес Адема 37910	2	0,95	1	1	0	0,750	0,250
Монтвик Чифтейна 95679	21	10	9	12	0	0,714	0,286

Как показывают мировые исследования, существует различие не только по молочной продуктивности у животных с различными генотипами исследуемых генов, но и различия у животных одного генотипа одного гена, принадлежащих к различным линиям.

Так, был проведен анализ молочной продуктивности исследуемых животных по первой, второй и третьей лактации в зависимости от их линейной принадлежности с учетом следующих показателей: удой, содержание молочного жира и белка, белковомолочность, жирномолочность, количество соматических клеток за 305 дней лактации. Полученные данные представлены в таблицах (таблицы 2, 3, 4).

Таблица 2 – Влияние полиморфных вариантов гена лактоферрина на показатели молочной продуктивности первотёлок с разной линейной принадлежностью

молочной продуктивности первотелок е разной линейной принадлежностью								
линия	генотип	n	Удой, кг	Жирномолочность %	Количество молочного жира, кг	Белковомолочность,	Количество молочного белка, кг	Количество соматических клеток, тыс/мл
Рефлекшн Соверинга	LTF ^{AA}	52	7710,1± 152,14	3,72±0,04	286,9±6,81	3,25± 0,01	250,7±5,08	195,3± 13,36
198998	LTF AB	34	7581± 212,52	3,71±0,05	280,5±7,99	3,28± 0,02	249,1±7,32	232,6± 17,5
Вис Айдеала 933122	LTF AA	59	7218,6± 155,34	3,67±0,03	265,6±6,84	3,29± 0,01	237,1±5,1	152,4±8,9
	LTF AB	22	6978,4± 156,47	3,72±0,04	260,3±7,27	3,3±0,02	230,2±5,77	243,3± 21,57 ***
Монтвик Чифтейна	LTF ^{AA}	9	7385,4± 444	3,68±0,09	269,9± 14,44	3,29± 0,02	242,2± 13,32	146±15,47
95679	LTF AB	12	7330,9± 418,6	3,71±0,07	272,6± 17,77	3,31± 0,05	242,1± 13,63	253,9± 46,31**
Пабст Говернера 882933	LTF AA	3	7677,5± 1433,6	3,55±0,18	277,9± 67,28	3,24± 0,02	248± 45,21	271,3±61
	LTF ^{AB}	6	7886,7± 288,28	3,68±0,11	291,2± 17,51	3,25± 0,03	256,8± 10,59	273,3± 51,75
Силинг Трайджун Рокита 252803	LTF ^{AA}	10	7426,2± 385,37	3,69±0,07	274,3± 15,21	3,22± 0,04	237,8± 10,66	178,4± 23,4

количество соматических клеток

Данные таблицы свидетельствуют о том, что животные с генотипом LTF^{AA} имели наибольший удой, жирномолочность и количество молочного жира в линии Рефлекшн Соверинга 198998 и превосходили животных других линий данного генотипа на 32,6 - 491,5 кг, 0,01 - 0,17 %, 9 - 21,3 кг. Однако наибольший удой и количество молочного жира у животных всех линий и генотипов наблюдался у животных с генотипом LTF^{AB} - 7886,7 кг и 291,2 кг соответственно в линии Пабст Говернера 882933.

Белковомолочность у первотелок с генотипом LTF^{AA} разных линий составляла от 3,22 % (линия Пабст Говернера 882933) до 3,29 % (линия Вис Айдеала 933122 и Монтвик Чифтейна 95679), а с генотипом LTF^{AB} - от 3,25 % (линия Пабст Говернера 882933) до 3,3 % (линия Вис Айдеала 933122).

По содержанию молочного белка выгодно отличались животные с генотипом LTF^{AB} линии Пабст Говернера 882933, они превосходили сверстниц разных генотипов и линий на 6,1-26,6 кг.

^{**-} межгрупповые различия между животными с генотипами LTF $^{\rm AA}$ и LTF $^{\rm AB}$ линии Монтвик Чифтейна 95679 статистически достоверны при P < 0,01;

^{*** -} межгрупповые различия между животными с генотипами LTF $^{\rm AA}$ и LTF $^{\rm AB}$ линии Айдиала статистически достоверны при P < 0,001.

Наиболее низкое содержание соматических клеток наблюдалось у животных линии Монтвик Чифтейна 95679 с генотипом LTF^{AA} и составляла 146 тыс/мл, что на 107,9 тыс/мл меньше, чем у животных с генотипом LTF^{AB} этой же линии (P<0,01). Также не высокое количество соматических клеток наблюдалось у животных с генотипом LTF^{AA} в линиях Вис Айдеала 933122, на 90,9 тыс/мл ниже, чем у животных с генотипом LTF^{AB} этой же линии (P<0,001).

Таким образом по показателям молочной продуктивности отличались в лучшую сторону животные линии Рефлекшн Соверинга 198998 с генотипом LTF^{AA} , однако наименьшее количество соматических клеток наблюдалось у животных с генотипом LTF^{AA} линий Вис Айдеала 933122 и Монтвик Чифтейна 95679.

Таблица 3 – Влияние полиморфных вариантов гена лактоферрина на показатели молочной

продуктивности коров второй лактации с разной линейной принадлежностью

	ער		г коров второй					
линия	генотип	u	Удой, кг	Жирномолочность %	Количество молочного жира, кг	Белковомолочность %	Количество молочного белка, кг	Количество соматических клеток, тыс/мл
Рефлекшн Соверинга	LTF	52	8488,2±167,49	3,72±0,04	316,6±7,57	3,26±0,01	276,5±5,59	193,1±12,57
198998	LTF AB	34	8346,1±233,97	3,71±0,05	308,6±8,88	3,27±0,02	273,5±8,06	241±21,26
Вис	LTF AA	59	7947±171,01	3,67±0,03	292,9±7,57	3,29±0,01	261,2±5,64	151,9±8,99
Айдеала 933122	LTF AB	22	7682,7±172,26	3,72±0,04	286,3±8,03	3,28±0,02	252,1±6,28	249,2±19,82 ***
Монтвик	LTF	9	8131,1±488,85	3,7±0,09	298,8±15,79	3,29±0,02	267,2±14,86	143,2±17,63
Чифтейна 95679	LTF AB	12	8070,7±460,89	3,7±0,07	299,7±19,35	3,3±0,05	266,1±15,21	244±45,55 *
Пабст Говернера	LTF AA	3	8452,3±1589,3	3,55±0,18	305,6±73,69	3,24±0,02	273,1±49,78	248±73
882933	LTF AB	6	8682,6±317,38	3,68±0,11	320,5±19,19	3,24±0,02	281,6±11,22	292,5±52,96
Силинг Трайджун Рокита 252803	LTF AA	10	8175,6±424,26	3,7±0,07	302,2±16,48	3,24±0,04	263,7±11,98	168,3±23,75

количество соматических клеток

Сравнительный анализ животных второй лактации с генотипом LTF различных линий показал, что по удою, жирномолочности и количеству молочного жира, коровы линии Рефлекшн Соверинга 198998 превосходили сверстниц других линий на 35,9 - 541,2 кг, 0,17- 0,2 %, 14,4 - 23,7 кг соответственно.

^{*-} межгрупповые различия между животными с генотипами LTF $^{\rm AA}$ и LTF $^{\rm AB}$ линии Монтвик Чифтейна 95679статистически достоверны при P < 0,05;

^{*** -} межгрупповые различия между животными с генотипами LTF $^{\rm AA}$ и LTF $^{\rm AB}$ линии Вис Айдеала 933122 статистически достоверны при P < 0,001.

Белковомолочность у животных генотипа LTF AA находилась в пределах 3,24 - 3,29 %. Однако наибольший процент белка был в линии Монтвик Чифтейна 95679 у животных с генотипом LTF AB и составляла 3,3 %. Количество молочного белка колебалось от 252,1 кг до 281,6 кг. Наибольшее количество белка у коров с генотипом LTF AA наблюдалось у животных в линии Рефлекшн Соверинга 198998.

Наиболее низкое количество соматических клеток было выявлено в линиях Вис Айдеала 933122 и Монтвик Чифтейна 95679 у животных с генотипом LTF^{AA}. Так животные линии Вис Айдеала 933122 имели более низкое содержание соматических клеток в молоке по сравнению со сверстницами этой же линии на 97,3 тыс/мл (P < 0,001). У животных линии Монтвик Чифтейна 95679 разница между числом соматических клеток у животных разных генотипов составила 100,8 тыс/мл (P < 0,05).

У животных остальных линий уровень соматических клеток находился в переделах от 168,3 до 248 тыс/мл (генотип LTF^{AA}), и от 241 до 292,5 тыс/мл (генотип LTF^{AB}).

Таблица 4 — Влияние полиморфных вариантов гена лактоферрина на показатели молочной продуктивности коров третьей лактации с разной линейной принадлежностью

F - 7	٠,		коров третвен	1	<u> </u>	,		- I
линия	генотип	u	Удой, кг	Жирномолочность %	Количество молочного жира, кг	Белковомолочность %	Количество молочного белка, кг	Количество соматических клеток, тыс/мл
Рефлекшн Соверинга	LTF	52	9252,1±182,56	3,74±0,04	346,3±8,35	3,26±0,01	302,3±6,18	194,1±13,22
198998	LTF AB	34	9097,2±255,03	3,71±0,05	336,5±9,66	3,3±0,02	300,1±8,92	236,1±23,51
Вис Айдеала 933122	LTF AA	59	8662,3±186,4	3,68±0,03	320,1±8,32	3,3±0,01	285,7±6,15	158,5±8,49
	LTF AB	22	8374,1±187,76	3,73±0,04	313,3±8,89	3,3±0,02	276,5±6,9	245,3±23,56 ***
Монтвик Чифтейна	LTF AA	9	8862,9±532,84	3,71±0,09	326,42±17,3	3,3±0,02	291,3±16,1	153,1±14,55
95679	LTF AB	12	8797,1±502,37	3,71±0,08	327,6±21,55	3,32±0,05	291,4±16,17	245,3±45,33
Пабст Говернера 882933	LTF AA	3	9213±1732,3	3,58±0,18	335,8±81,49	3,23±0,02	297,8±55,5	250±58,7
	LTF AB	6	9464±345,94	3,7±0,12	351,3±21,68	3,25±0,03	307,7±12,88	248±56,81
Силинг Трайджун Рокита 252803	LTF AA	10	8911,4±0,07	3,72±0,07	331,2±18	3,24±0,04	287,2±12,95	171,9±22,28

Количество соматических клеток

*** - межгрупповые различия между животными с генотипами LTF $^{\rm AA}$ и LTF $^{\rm AB}$ линии Вис Айдеала 933122 статистически достоверны при P < 0,001.

Согласно данным таблицы №4, животные линии Пабст Говернера 882933 с генотипом LTF^{AB} имели более высокий удой в сравнении со сверстницами других линий и генотипов, однако именно представительницы данной линии имели наибольшее число соматических

клеток в молоке: 250 тыс/мл у коров с генотипом LTF AA , и 248 тыс/мл у животных с генотипом LTF AB .

Наименьшее количество белка среди сверстниц было установлено у животных линии Пабст Говернера 882933, и составило 3,23 - 3,25 %. Наибольшая белковомолочность составила 3,3 % и была выявлена у животных в линиях Рефлекшн Соверинга 198998, Вис Айдеала 933122 и Монтвик Чифтейна 95679. При том, в линии Вис Айдеала 933122 установлено, что различия в содержании белка у животных с разными генотипами не имеет разницы и составляет 3,3 %.

Наименьшее содержание соматических клеток в молоке было установлено у животных, принадлежащих к линиям Вис Айдеала 933122: у животных с генотипом LTF^{AA} их количество было на 86,8 тыс/мл меньше, чем у животных с генотипом LTF^{AB} этой же линии (P < 0,001). Наиболее выигрышно по сравнению со сверстницами по количеству соматических клеток выглядят животные с генотипом LTF^{AA} линий Вис Айдеала 933122, Монтвик Чифтейна 95679, Силинг Трайджун Рокита 252803.

Заключение. Таким образом, при изучении встречаемости генотипов гена лактоферрина было установлено преобладание генотипа LTF^{AA} в линиях Рефлекшн Соверинга 198998, Вис Айдеала 933122 и Силинг Трайджун Рокита 252803. В линиях Пабст Говернера 882933, Хильтьес Адема 37910 и Монтвик Чифтейна 95679 преобладал генотип LTF^{AB}. Также было установлено преимущество аллеля А над аллелем В во всех линиях, наибольшая частота аллеля А наблюдалась в линии Вис Айдеала 933122, а преобладание аллеля В в линии Пабст Говернера 882933.

По таким показателям молочной продуктивности как удой, жирно- и белковомолочность, количество молочного жира и белка, выгодно отличались от сверстниц животные линии Рефлекшн Соверинга 198998. В частности преимуществом обладали животные с генотипом LTF^{AA}. При этом, по количеству соматических клеток, наибольшее значением количества соматических клеток в молоке обладали животные линии Пабст Говернера 882933, а наименьшим количеством животные линии Монтвик Чифтейна 95679 и Вис Айдеала 933122, в частности, животные с генотипом LTF^{AA}.

Литература

- 1. Генотипирование племенных животных с помощью молекулярно-генетических методов : методические рекомендации / Е.С. Усенбеков [и др.]. Алматы : Айтумар, 2014. 81 с.
- 2. Лучко И. Т. Современные представления об этиологии, патогенезе маститов у коров и мерах борьбы с ними / И. Т. Лучко, О. П. Ивашкевич // Эпизоотология, иммунобиология, фармакология, санитария. − 2011. − № 2. − С. 16-24.
- 3. Меркурьева Е. К. Генетические основы селекции в скотоводстве / Е. К. Меркурьева. Москва : Колос, 1977. 239 с.
- 4. Тюлькин Л. В. Полиморфизм гена лактоферрина у быков-производителей в Республике Татарстан / Л. В. Тюлькин, А. В. Муратова [и др.] // Актуальные вопросы ветеринарной биологии. 2015. 10.
- 5. Шамсиева Л. В. Ветеринарно-гигиеническое обоснование продуктивных качеств коров на фоне генетических факторов / Л. В. Шамсиева. Казань, 2018. 135 с.
- 6. Шейко И. П. Перспективы научной и инновационной деятельности в животноводстве Беларуси / И. П. Шейко // Весці Нацыянальнай акадэміі навук Беларусі. Серыя аграрных навук. 2018. Т. 56, № 2. С. 188-199.
- 7. Czerniawska-Piątkowska E. The use of genetic markers in the fight against mastitis / E. Czerniawska-Piątkowska, J. Lukomska, P. Bortacki // Folia Pomeranae Universitatis Technologiae

Stetinensis. – Seria Agricultura, Alimentaria, Piscaria et Zootechnica. – 2017. – Vol. 334. – No. 42/2. – P. 21-28.

- 8. Identification of relationship of polymorphic variants of lactoferrin gene (LTF) in cows with milk production indicators depending on their lineage / F. Zinnatov, F. Zinnatova [et al.] // AGRITECH-III-2020 : IOP Conf. Series: Earth and Environmental Science. 2020. P. 1-6.
- 9. Novel single nucleotide polymorphisms in lactoferrin gene and their association with mastitis susceptibility in holstein cattle / A. I Ateya, Y. Y EL-Seady, S. M. Atwa, B. H. Merghani, N. A. Sayed // Genetica. -2016. Vol. 48. No. 1. P. 199-210.

УДК 636.084.413

ЗНАЧЕНИЕ НАФТОХИНОНА (ВИТАМИНА К) В КОРМЛЕНИИ И ЖИЗНЕДЕЯТЕЛЬНОСТИ ЖИВОТНЫХ

Скобелина С. В., Козицына А. И. ФГБОУ ВО СПбГУВМ, г. Санкт-Петербург, Россия

Аннотация. Витамины являются низкомолекулярными органическими соединениями различной химической природы, которые необходимы для нормальной жизнедеятельности организмов. Витамины вступают в разнообразных химических реакциях и тем самым обеспечивают нормальное течение биохимических процессов в организме. Нафтохинон способствует нормальной свертываемости крови, участвует в энергетическом обмене, обладает бактериостатическим действием. При недостатке витамина К в организме начинаются различные кровотечения. Основными биологическими резервами витамина К являются пищевые растения, такие как томат, горох, шпинат, земляника, а также лекарственные растения: крапива, горец перечный, пастушья сумка. Из мясных продуктов наибольшее содержания витамина К в печени, говядине, свинине, яйцах, треске. Синтезируется в небольшом количестве микрофлорой кишечника. Дефицит витамина К негативно влияет на рост и развитие организма.

Ключевые слова: нафтохинон, витамин К, гиповитаминоз, анемия.

По своей химической природе является хиноном с боковой изопреноидной цепью. Существует несколько форм витамина $K: K_1$ (филлохинон), K_2 (менахинон), K_3 (менадион). После всасывания менадион превращается в активную форму – менахинон.

Витамин K_1 является вязкой светло-желтой жидкостью, которая имеет температуру плавления около 20 градусов, в воде не растворяется, но хорошо растворяется в органических растворителях, таких как бензол или ацетон. Неустойчив к ультрафиолетовым лучам и устойчив к инфракрасным лучам. Витамин K разрушается при тепловой обработке. Также при температуре около -20°C образуются кристаллы, а при температуре около -145 °C в вакууме – закипает.

Природные витамины K_1 и K_2 способны превращаться друг в друга, также витамин K_1 способен превращаться в K_2 в организме птиц и животных. Синтетический аналог витамина K_3 обладает высокой антигеморрагической активностью. Синтетический витамин K_3 при определенной дозировке обладает так же антигеморрагической активностью, но не удобен в применении из-за того, что он не растворяется в воде и имеет горький вкус. На его основе синтезировано множество соединений, которые по своему строению схожи с витамином K_3 также обладающих антигеморрагическим эффектом и растворимы в воде. Витамин K_3 не стабилен по отношению K_3 кислотам, растворам щелочей, K_3 уф-лучам. При взаимодействии со спиртовым раствором щелочи витамин K_3 образует соединения темно-фиолетового цвета, которые постепенно становятся темно-коричневыми.