УДК 631.363.7

ОПРЕДЕЛЕНИЕ ПОТРЕБНОЙ МОЩНОСТИ НА ПРИВОД РОТОРА МНОГОФУНКЦИОНАЛЬНОГО ИЗМЕЛЬЧИТЕЛЯ-СМЕСИТЕЛЯ КОРМОВ

Китун А.В.

БГАТУ, г. Минск, Республика Беларусь

При работе измельчителя-смесителя кормов ротор можно рассматривать как маховик, вращающийся относительно неподвижной оси под действием момента $M_{\rm дв}$ с угловой скоростью $\omega_{\rm p}$. В этом случае уравнение привода ротора в динамическом режиме будет иметь вид

$$I_{p} \frac{d\omega_{p}}{dt} = M_{_{AB}} - M_{_{c}}, \qquad (1)$$

где $\,M_{_{\rm I\!I}}\,$ – момент, возникающий от электродвигателя, H м;

 ${
m M}_{\rm c}$ – момент сопротивления вращению системы, H м.

Для привода системы во вращение затрачивается мощность, величину которой можно определить по формуле

$$\mathbf{N}_{\mathbf{IB}} = \mathbf{M}_{\mathbf{IB}} \ \mathbf{\omega}_{\mathbf{p}}, \tag{2}$$

Таким образом, для определения мощности, необходимой для привода ротора измельчителя, необходимо определить момент, возникающий от электродвигателя. Для этого уравнение (1) можно представить в следующем виде:

$$\mathbf{M}_{_{\mathbf{A}\mathbf{B}}} = \mathbf{I} \frac{\mathbf{d}\boldsymbol{\omega}_{_{\mathbf{p}}}}{\mathbf{d}t} + \mathbf{M}_{_{\mathbf{c}}}, \tag{3}$$

Сопротивление движению системы (ротора) возникает при измельчении кормов $M_{\mbox{\tiny ИЗМ}}$, при перемещении кормов внутри рабочей камеры $M_{\mbox{\tiny УСК}}$, при преодолении трения в подшипниках системы $M_{\mbox{\tiny Тр}}$ и при преодолении сопротивления воздуха $M_{\mbox{\tiny BO3}}$:

$$\mathbf{M}_{c} = \mathbf{M}_{_{\mathbf{H}3\mathbf{M}}} + \mathbf{M}_{_{\mathbf{V}CK}} + \mathbf{M}_{_{\mathbf{T}\mathbf{D}}} + \mathbf{M}_{_{\mathbf{B}03}}, \tag{4}$$

Анализ уравнения (4) показывает, что два последних слагаемых в измельчителе-смесителе вертикального типа будут оказывать небольшое влияние на сопротивление движению системы. В измельчителях этого типа узлы трения размещены за пределами рабочей камеры и надежно изолированы от попадания пыли или других примесей. Горизонтальное расположение боковых плоскостей ножей и небольшая толщина оказывают минимальное сопротивление воздушному потоку.

Таким образом, с принятыми допущениями уравнение (3) будет иметь вид

$$\mathbf{M}_{_{\mathrm{JB}}} = \mathbf{I}_{\mathrm{p}} \frac{\mathbf{d}\boldsymbol{\omega}_{_{\mathrm{p}}}}{\mathbf{d}\mathbf{t}} + \mathbf{M}_{_{\mathrm{H3M}}} + \mathbf{M}_{_{\mathrm{yck}}}, \tag{5}$$

В процессе работы измельчителя-смесителя кормов происходит изменение подачи кормовых компонентов в рабочую камеру. В результате колебания поступающих кормов возможно возрастание момента при их измельчении, т. е.

$$\mathbf{M}_{\mathbf{H}\mathbf{3M}} = \mathbf{M}_{\mathbf{H}\mathbf{3M}}' + \Delta \mathbf{M}_{\mathbf{H}\mathbf{3M}},\tag{6}$$

Первое слагаемое формулы (6) определим из выражения

$$\mathbf{M}'_{\text{H3M}} = \boldsymbol{\omega}_{p}, \mathbf{Q}_{\text{H3M}}, \mathbf{f}, \mathbf{t} = \frac{\mathbf{K} \, \boldsymbol{\vartheta}_{\text{уд,H3M}}(\boldsymbol{\omega}, \mathbf{Q}_{\text{H3M}}, \mathbf{f}, \mathbf{t})}{\boldsymbol{\omega}_{n}} \, \mathbf{Q}_{\text{H3M}}, (7)$$

где К – переводной коэффициент;

 $\Im_{\text{удизм}}$ – удельный расход энергии на измельчение и смешивание кормов, к $\mathrm{BT}\cdot\mathrm{u/T}$;

f - коэффициент трения;

t – время, затрачиваемое на выполнение процесса, с.

Величину приращения момента $\Delta M_{\mbox{\tiny H3M}}$ можно определить по формуле

$$\Delta \mathbf{M}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}} = \frac{\mathbf{K} \ \Delta \mathbf{G}_{_{\mathbf{y}\mathbf{J},\mathbf{H}\mathbf{3}\mathbf{M}}}(\boldsymbol{\omega}_{_{\mathbf{p}}}, \mathbf{Q}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}}, \mathbf{f}, \mathbf{t})}{\boldsymbol{\omega}_{_{\mathbf{p}}}} \quad \mathbf{Q}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}} + \Delta \mathbf{Q}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}} \quad , \quad (8)$$

В уравнении (8) приращение удельных затрат энергии на измельчение-смешивание кормов при незначительных изменениях независимых переменных можно определить по формуле

$$\Delta \boldsymbol{\vartheta}_{_{\boldsymbol{y}\boldsymbol{z},\boldsymbol{H}\boldsymbol{3}\boldsymbol{M}}} = \frac{dF(\boldsymbol{\omega}_{_{\boldsymbol{p}}},\boldsymbol{Q}_{_{\boldsymbol{H}\boldsymbol{3}\boldsymbol{M}}},\boldsymbol{f})}{d\boldsymbol{Q}_{_{\boldsymbol{H}\boldsymbol{3}\boldsymbol{M}}}} \ \Delta \boldsymbol{Q}_{_{\boldsymbol{H}\boldsymbol{3}\boldsymbol{M}}} - \frac{dF \ \boldsymbol{Q}_{_{\boldsymbol{H}\boldsymbol{3}\boldsymbol{M}}},\boldsymbol{\omega}_{_{\boldsymbol{p}}},\boldsymbol{f}}{d\boldsymbol{\omega}_{_{\boldsymbol{p}}}} \ \Delta \boldsymbol{\omega} + \frac{dF \ \boldsymbol{Q}_{_{\boldsymbol{H}\boldsymbol{3}\boldsymbol{M}}},\boldsymbol{\omega}_{_{\boldsymbol{p}}},\boldsymbol{f}}{d\boldsymbol{f}} \ \Delta \boldsymbol{f}$$

ипи

$$\Delta \Theta_{y_{JLH3M}} = K_{Q_{H3M}} \Delta Q_{H3M} - K_{\omega_p} \Delta \omega_p + K_f \Delta f, \qquad (9)$$

где $K_{Q_{_{\text{HSM}}}}, K_{_{\omega_p}}$, $K_{_f}$ – приращение частных производных исходного режима работы измельчителя-смесителя кормов;

 $\Delta Q_{_{\text{изм}}}$ — величина изменения производительности измельчителя-смесителя кормов, кг/с.

Подставив в формулу (6) значения (7), (8) и (9), определим момент, возникающий при измельчении кормов:

$$\mathbf{M}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}} = \mathbf{K} \ \boldsymbol{\omega}_{_{\mathbf{p}}}^{-1} \left[\boldsymbol{\vartheta}_{_{\mathbf{y}\mathbf{Z},\mathbf{H}\mathbf{3}\mathbf{M}}} \ \mathbf{Q}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}} + \mathbf{K}_{_{\mathbf{Q}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}}}} \ \Delta \mathbf{Q}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}} - \mathbf{K}_{_{\boldsymbol{\omega}_{_{\mathbf{p}}}}} \ \Delta \boldsymbol{\omega} + \mathbf{K}_{_{\mathbf{f}}} \Delta \mathbf{f} \ \mathbf{Q}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}} + \Delta \mathbf{G}_{_{\mathbf{H}\mathbf{3}\mathbf{M}}} \right]$$

Момент, затрачиваемый на ускорение движения корма в рабочей камере, в общем виде равен:

$$\mathbf{M}_{vc\kappa} = \mathbf{M}'_{vc\kappa} + \Delta \mathbf{M}_{vc\kappa}, \tag{11}$$

где $\,M'_{yck}\,$ – момент, затрачиваемый на ускорение движения корма, $\,H$ м;

 ΔM_{yck} – приращение момента, затрачиваемого на ускорение движения корма в рабочей камере измельчителя; Н м.

Момент, затрачиваемый на ускорение движения корма, определим по формуле

$$\mathbf{M}_{\text{yck}}' \ \mathbf{\omega}_{\text{p}}, \mathbf{Q}_{\text{H3M}}, \mathbf{t} = \frac{\mathbf{m}_{\text{k}} \ \mathbf{\omega}_{\text{p}}, \mathbf{Q}_{\text{H3M}} \ \mathbf{V}_{\text{cn}}^{2} \ \mathbf{\omega}_{\text{p}}, \mathbf{Q}_{\text{H3M}}, \mathbf{t}}{2}, \quad (12)$$

где $\,V_{\text{сл}}\,$ – скорость движения слоя корма в рабочей камере, $\,{\mbox{M}/c}\,;$

 m_{κ} – масса корма, находящегося в рабочей камере, кг.

Массу корма, поступающего в рабочую камеру, можно определить по формуле

$$\mathbf{m}_{\kappa} = \frac{\mathbf{m}_{\kappa}' \mathbf{g}}{\mathbf{V}_{\kappa} \ \mathbf{\omega}_{\mathbf{p}}},\tag{13}$$

где m'_{κ} – масса корма, поступающего с транспортера, кг;

 V_{κ} – скорость поступления корма с транспортера до рабочей камеры, м/с.

При падении с транспортера на частицы корма действует сила тяжести и сила сопротивления воздуха. Дифференциальное уравнение первого порядка движения частиц корма будет иметь вид

$$\mathbf{m}_{\kappa}' \frac{\mathbf{dh}'}{\mathbf{dt}} = \mathbf{m}_{\kappa}' \mathbf{g} - \mathbf{m}_{\kappa}' \mathbf{K}_{\Pi} \left(\frac{\mathbf{dh}'}{\mathbf{dt}} \right)^{2}, \tag{14}$$

где h – расстояние от точки схода корма с транспортера до рабочей камеры, м;

g – ускорение силы тяжести, M/c^2 ;

 $K_{_{\Pi}}$ – средневзвешенный коэффициент парусности.

В момент схода корма с транспортера его скорость в направлении вертикальной оси равна нулю, тогда начальные условия движения частиц от точки отрыва будут иметь вид

$$\frac{\mathbf{h}}{\mathbf{t}=\mathbf{0}}=\mathbf{0}; \qquad \frac{\frac{\mathbf{dh}'}{\mathbf{dt}}}{\mathbf{t}=\mathbf{0}}=\mathbf{0}.$$

Тогда в уравнении (9), не содержащем времени t, возможно понижение порядка (полагая, что h=v(h)). В этом случае уравнение примет вид

$$\mathbf{V}_{\kappa}' \ \mathbf{V}_{\kappa} = \mathbf{gh} \cdot \mathbf{K}_{\mu} \ \mathbf{V}_{c}^{2}, \tag{15}$$

Решая уравнение (15) при $V_{\kappa'}|_{t=0} = 0$, получаем скорость поступления корма в рабочую камеру

$$\mathbf{V}_{\kappa} = \sqrt{\frac{\mathbf{g}(\mathbf{1} - \mathbf{e}^{-2\mathbf{R}_{n}\mathbf{h}})}{\mathbf{K}_{n}}},$$
(16)

Подставив значение (16) в (13), определим массу корма в рабочей камере измельчителя-смесителя. Скорость движения слоя корма, движущегося в рабочей камере измельчителя-смесителя вертикального типа, можно определить по известной формуле

$$V = tg\alpha \sqrt{\frac{R_{\kappa} m_{\kappa}g + \pi\rho_{B}\omega_{p}r_{m} V_{B} r_{H}^{2}}{f_{\kappa}m_{\kappa}\left[\cos\alpha + tg \gamma + \phi + \sin\alpha_{T}\right]}},$$
(17)

Приращение момента, затрачиваемого на ускорение движения корма, зависит от колебания массы корма в рабочей камере

$$\mathbf{m}_{\kappa} = \mathbf{F}(\mathbf{Q}_{\mathrm{HM}}, \mathbf{\omega}_{\mathrm{n}}), \tag{18}$$

или приращение момента равно

$$\Delta \mathbf{M}_{yck} = \frac{\mathbf{dF}(\mathbf{Q}_{H3M}, \boldsymbol{\omega}_{p})}{\mathbf{dQ}_{H3M}} \Delta \mathbf{Q}_{H3M} - \frac{\mathbf{dF} \ \mathbf{Q}_{H3M}, \boldsymbol{\omega}_{p}}{\mathbf{d\omega}_{p}} \Delta \boldsymbol{\omega}_{p}, \quad (19)$$

Упростив уравнение (19), получим

$$\Delta \mathbf{M}_{\mathbf{y}\mathbf{c}\mathbf{\kappa}} = \mathbf{K}_{\mathbf{y}\mathbf{c}\mathbf{\kappa},\mathbf{Q}_{\mathbf{H}\mathbf{3}\mathbf{M}}} \ \Delta \mathbf{Q}_{\mathbf{H}\mathbf{3}\mathbf{M}} - \mathbf{K}_{\mathbf{y}\mathbf{c}\mathbf{\kappa},\boldsymbol{\omega}_{\mathbf{p}}} \ \Delta \boldsymbol{\omega}_{\mathbf{p}}, \tag{20}$$

Тогда момент, затрачиваемый на ускорение движения корма в рабочей камере измельчителя-смесителя вертикального типа, можно определить по формуле

$$M_{_{yc\kappa}} = \frac{m_{_{\kappa}}'tg^2\alpha\sqrt{\left(\frac{R_{_{\kappa}}\ m_{_{\kappa}}'g + \pi\rho_{_{B}}\omega\ r_{_{II}}\ V_{_{B}}\ r_{_{I}}^2}{f_{_{\kappa}}m_{_{\kappa}}'\left[\cos\alpha + tg\ \gamma + \phi\ + sin\alpha_{_{T}}\right]\right)^2}} + K_{_{c\kappa}}\Delta Q_{_{_{H3M}}} - K_{_{yc\kappa\omega}}\ \Delta\omega_{_{p}}}{2\sqrt{\frac{g(1-e^{-2R_{_{II}}\ h}})}}\ \omega_{_{p}}$$

(21)

Момент инерции ротора измельчителя в общем виде можно определить по формуле

$$\mathbf{I}_{\mathbf{p}} \frac{\mathbf{d}\mathbf{\omega}_{\mathbf{p}}}{\mathbf{dt}} = \sum_{i=1}^{n} \mathbf{m}_{\mathbf{p}_{i}} \ \mathbf{R}_{i\mathbf{c}\mathbf{p}}^{2} \mathbf{\omega}_{\mathbf{p}}^{2}, \tag{22}$$

где $\,m_{p_i}^{}\,$ – масса і-го элемента ротора, кг;

 ${f R}_{icp}$ – радиус инерции $\,$ i-го элемента ротора относительно оси вращения, м.

Полученные формулы позволяют определить мощность, затрачиваемую на привод ротора измельчителя при выполнении технологического процесса измельчения:

$$\begin{split} \mathbf{N}_{\text{AB}} &= \\ \mathbf{K} \ \boldsymbol{\omega_p}^{\text{-1}} & \left[\boldsymbol{\vartheta}_{\text{уд.изм}} \ \mathbf{Q}_{\text{изм}} + \ \mathbf{K}_{\mathbf{Q}_{\text{изм}}} \ \Delta \mathbf{Q}_{\text{изм}} - \mathbf{K}_{\boldsymbol{\omega_p}} \ \Delta \boldsymbol{\omega}_p + \mathbf{K}_f \Delta \mathbf{f} \ \mathbf{Q}_{\text{изм}} + \Delta \mathbf{Q}_{\text{изм}} \right] \\ + \end{split}$$

$$\frac{\left(\frac{m_{\kappa}'tg^{2}\alpha\sqrt{\left(\frac{R_{\kappa}''m'g+\pi\rho_{B}\omega r_{II}''V_{B}'r_{II}^{2}}{f_{\kappa}m'\left[\cos\alpha+tg''\gamma+\varphi''+\sin\alpha_{T}\right]}\right)^{2}}}{2\sqrt{\frac{g(1-e^{-2R_{II}''h})}{K_{II}''}}\omega_{p}}\right)\omega_{p}+\sum_{i=1}^{n}m_{p_{i}}R^{2}_{pi}\omega_{p}^{3}.$$
(23)

Формула (23) позволяет определить мощность на привод ротора измельчителя с учетом его конструктивных особенностей, физикомеханических свойств кормов и возможных колебаний подачи кормов в рабочую камеру.

Резюме

Энергосберегающая технология использования кормов на фермах крупного рогатого скота и методика расчета числа смесителей-раздатчиков. Приведенная формула позволяет определить мощность на привод ротора измельчителя с учетом его конструктивных особенностей, физико-механических свойств кормов и возможных колебаний подачи кормов в рабочую камеру.

УДК 636.2.612.017

ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ БИОГЕННОГО ТКАНЕВОГО ПРЕПАРАТА «МАСТИМ» ДЛЯ КОРРЕКЦИИ ЕСТЕСТВЕННОЙ РЕЗИСТЕНТНОСТИ БЫЧКОВ

Мануйко С.А.

Республиканское унитарное предприятие «Институт животноводства Национальной академии наук», г. Жодино, Республика Беларусь

Интенсификация сельскохозяйственного производства и перевод животноводства на промышленную основу хотя и открыла широкие перспективы дальнейшего роста поголовья скота и повышения его продуктивности, но вместе с тем создала ряд проблем теоретического и практического характера. При качественно новых методах содержания и эксплуатации животных организм испытывает большие функциональные нагрузки, что изменяет его иммунологическую реактивность и способствует тем самым развитию заболеваний, обусловленных условнопатогенной микрофлорой. Потери от болезней особенно выражены в определенные периоды технологического цикла, когда животные наиболее подвержены воздействию агрессивных факторов внешней среды. Исходя из этого, основу мероприятий по предупреждению заболеваний молодняка, особенно в условиях промышленных комплексов, должны составлять комплексные мероприятия, повышающие устойчивость растущих животных к неблагоприятным воздействиям внешней среды. В этой связи особую актуальность приобретают исследования, направленные на изучение возрастных особенностей иммунобиологической защиты организма и поиска методов ее коррекции для обеспечения высокой жизнестойкости, сохранности и продуктивности молодняка. Для коррекции естественной резистентности организма животных в последнее время используются иммуностимуляторы [1, 2, 3, 4, 5], так как они оказывают действие, направленное на активацию как клеточного, так и гуморального иммунитета. Кроме этого, вакцины, антибиотики и химиотерапевтические препараты, применяемые для профилактики болезней и лечения, не всегда дают желаемые результаты, в связи с тем, что к ним адаптируются большинст-