2. Филипенко Н.К., Подвительская М.В. Влияние уровней грунтовых вод на продуктивность многолетних трав // Мелиорация и луговодство на пойменных землях: Сб. БелНИИМиЛ. - Минск 1996. - С. 145-153.

Резюме

Данная статья посвящена исследованию зависимости накопления радионуклидов цезия — 137 от положения УГВ и определению диапазона УГВ позволяющего минимизировать накопление радионуклидов цезия — 137 в зеленой массе многолетних злаковых трав.

Summary

It is described research of dependence of accumulation caesium-137 from position of a level of subsoil waters and definition of a subsoil water's level range, which allows to decrease accumulation caesium-137 in perennial cereals.

УДК 633.1 «321»:581.1

ИЗМЕНЕНИЕ ФИЗИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ РАСТЕНИЙ ЯРОВЫХ ЗЕРНОВЫХ КУЛЬТУР ПРИ ИНТЕНСИВНЫХ ТЕХНОЛОГИЯХ ВОЗДЕЛЫВАНИЯ

С.А.Тарасенко, Е.Б.Карпач

УО «Гродненский государственный аграрный университет», г. Гродно, Республика Беларусь

В условиях интенсивных технологий возделывания сельскохозяйственных культур изменение физиологического состояния растительного организма является важнейшей характеристикой продукционного процесса, активность которого обуславливает величину и качество получаемого урожая [1]. Знание особенностей накопления органического вещества, формирования ассимиляционной поверхности, потребления питательных элементов, образования фотосинтетических пигментов и других показателей растений в течение вегетации позволяет сформировать модель высокоинтенсивного агроценоза, увязать её с условиями минерального питания и другими факторами роста и развития растений [2]. Целью наших исследований являлось определение физиологического состояния растений яровых зерновых культур в условиях интенсивного применения средств химизации как одного из важнейших элементов современных технологий возделывания.

Исследования проводились в течение 1995-2005 гг. на опытном поле УО «ГГАУ», в УОСПК «Путришки», СПК «Коптевка» Гродненского района на дерново-подзолистых почвах с различными яровыми зерновыми культурами (ячмень, овес, яровая пшеница). Схемы опытов

предусматривали изучение различных элементов интенсивных технологий возделывания - уровня минерального питания и стимуляторов роста растений.

Установлено, что решающим фактором улучшения физиологических показателей растений яровых зерновых культур является уровень минерального и, прежде всего, азотного питания. Применение фосфорно-калийных удобрений в дозах Р20-60 К60-90 увеличивало накопление органического вещества растениями ячменя, овса и яровой пшеницы, по сравнению с контролем, на 1,8...3,8 (трубкование) и на 8,1...8,7 ц/га (колошение), повышало индекс листовой поверхности на 0,4...0,5 и на 0,6..0,7 единиц, увеличивало содержание хлорофилла на 0,27...0,53 и на 0,26...0,52%, соответственно (табл.1). Действие азотных удобрений (N80-90) было гораздо эффективнее. Приросты органического вещества, индекса листовой поверхности и содержания хлорофилла в фазу выхода в трубку составили 8,8...12,3 ц/га, 1,1...1,3 единиц и 0,43...0,82%, в фазу колошения - 40,4...42,2 ц/га, 1,3...1,4 единицы и 0,34...0,68%, соответственно.

Таблица 1
Влияние удобрений на изменение физиологических показателей растений яровых зерновых культур 1995-2005 гг

№ вари- анта	Вариант опыта	Органическое вещество, ц/га			Индекс листовой поверхности			Содержание хлорофилла в листьях, %				
анта		1	2	3	1	2	3	1	2	3		
Ячмень, 1997-1999 гг												
1	Контроль	4,2	18,6	34,6	0,3	2,7	2,9	2,12	2,24	0,72		
2	P40K60	4,3	20,5	42,7	0,3	3,2	3,5	2,07	2,77	0,98		
3	N90 P40K60	4,4	32,8	84,9	0,3	4,5	4,9	2,12	3,59	1,32		
Овес, 1995-1997 гг.												
1	Контроль	3.9	17,5	32,1	0,2	2,5	2,7	2,46	2,74	0,94		
2	P40K60	3,9	20,3	40,5	0,3	3,0	3,4	2,48	3,01	1,46		
3	N80 P40K60	3,9	31,6	80,9	0,3	4,2	4,8	2,45	3,66	2,05		
Яровая пшеница, 2000-2005 гг.												
1	Контроль	5,2	21,6	32,8	0,4	2,9	3,1	2,02	2,19	0,78		
2	P40K60	5,4	25,4	41,5	0,4	3,3	3,7	2,00	2,54	1,27		
3	N90 P40K60	5,4	34,2	82,7	0,4	4,4	5,0	2,06	2,97	1,95		

1- кущение, 2 – выход в трубку, 3 – колошение.

Высокая эффективность азота обуславливается тем, что этот элемент минерального питания растений в дерново-подзолистых почвах находится в состоянии «первого минимума» и определяет уровень получаемых урожаев сельскохозяйственных культур [3]. Следует отметить, что положительное влияние азота, а также фосфорно-калийных удобрений проявляется на растениях яровых зерновых культур в сере-

дине вегетации. В начале роста и развития (фаза куще-ния) различий по вариантам опытов в отношении накопления органического вещества, образования листовой поверхности и синтеза хлорофилла не установлено. В этот период растения яровых зерновых культур только полностью перешли на автотрофный способ питания и действие факторов внешней среды (обеспеченность питательными элементами) ещё не проявилось.

Изменение физиологических показателей яровых зерновых культур в течение вегетации имеет общую закономерность, независимую от уровня минерального питания растений. Накопление органического вещества и нарастание листовой поверхности ячменя, овса и яровой пшеницы продолжается до фазы колошения, в то время как максимальное содержание хлорофилла отмечено в листьях в фазу выхода в трубку. В связи с ростовым разбавлением и разрушением молекул хлорофилла количество этого пигмента к периоду колошения уменьшалось.

Наиболее ответственным моментом в формировании оптимальных физиологических показателей растений является период от выхода в трубку до колошения. На этом этапе прирост органического вещества достигал 65%, а увеличение индекса листовой поверхности 93% от их максимальных за вегетации количеств.

Важнейшим фактором, регулирующим параметры растительных организмов, являются физиологически активные вещества, в том числе и стимуляторы роста растений. Они обладают рядом эффективных воздействий на растения: изменяют направленность обмена веществ, повышают устойчивость к действию неблагоприятных условий внешней среды, усиливают поглощение питательных веществ из почвы и удобрений, регулируют процессы цветения [4]. В наших исследованиях действие стимуляторов роста определялось многими факторами (табл. 2). Это метеорологические условия вегетационного периода, биологические особенности возделываемых растений, виды и способы применения стимуляторов роста, агротехнический фон, на котором проводилось их изучение.

Установлено, что в наиболее ответственный период роста и развития яровых зерновых культур (фаза колошения) действие стимуляторов роста в условиях недостаточного минерального питания (контрольный вариант) проявлялось слабо. Накопление органического вещества увеличивалось всего на 1,9...2,2 (ячмень), на 0,9...1,5 (овес) и на 0,4...1,4 ц/га (яровая пшеница), что несопоставимо с действием минеральных удобрений (см. табл.1). Нарастание листовой поверхности и образование хлорофилла под действием стимуляторов роста также проходило

низкими темпами. Прирост первого показателя составил всего 0,1...0,3 единицы, второго -0,01...0,04%. Анализ данных по годам с использованием данных математической обработки часто показывал несущественность этих увеличений.

Таблица 2 Влияние стимуляторов роста растений на физиологические показатели растений яровых зерновых культур, 1995 - 2005 гг.

			Урожай-			
Культура,	Вариант	органи- индекс		хлоро-	ность,	
год	опыта	ческое	лист.	филл,	поотв,	
		вещест-	поверх-	%	ц/га	
		во, ц/га	ности			
	Контроль	34,6	2,9	0,72	42,8	
Ячмень,	Эпин	36,8	3,1	0,70	43,2	
1997-1999	Квартазин	36,5	3,1	0,71	42,4	
	Гидрогумат	34,5	3,0	0,73	42,6	
0000	Контроль	32,1	2,7	0,94	39,5	
Овес, 1995-1997	Эпин	33,6	3.0	0,90	40,2	
1995-1997	Квартазин	33,0	2,8	0,93	38,4	
	Контроль	32,8	3,1	0,78	38,0	
	Эпин	33,8	3,2	0,75	37,2	
	Гидрогумат	33,2	3,2	0,79	38,3	
Яровая	Феномелан	32,3	3,1	0,76	38,7	
пшеница,	ПВК*	33,8	3,4	0,82	40,1	
2000-2005	Новосил **	34,2	3,4	0,80	39,6	
	N90 Р40К60 - фон	82,7	5,0	1,95	47,7	
	Фон + эпин	86,3	5,7	2,25	51,2	
	Фон + новосил	87,4	5,7	2,33	50,9	

^{*} ПВК – полиметаллический водный концентрат, ** - данные за 2004 -2005 гг.

С другой стороны, стимуляторы роста были гораздо эффективнее, когда они применялись на высоком фоне минерального питания (N90P40K60). Внесение эпина и новосила на посевах яровой пшеницы увеличивало накопление органического вещества на 3,6...4,7 ц/га, повышало индекс листовой поверхности на 0,7 единиц, увеличивало содержание хлорофилла в листьях на 0,30...0,38%. Всё это приводило к росту урожайности яровой пшеницы на 3,2...3,5 ц/га.

Физиологические параметры растений яровых зерновых культур могут служить надежными показателями для прогнозирования активности продукционного процесса. Коэффициент корреляции меж-ду урожайностью зерна яровых зерновых культур и накоплением органического вещества составил 0,72, индексом листовой поверхности — 0,84, содержанием хлорофилла — 0,82.

Литература:

- 1. Гамалей Ю.В. Фотосинтез и экспорт ассимилятов// Физиология рас-тений. 1998, №4, с.27-33.
 - 2. Медведев С.С. Физиология растений. -СПб: Изд. С.-Петерб. ун-та, 2004. -336с.
- 3. Семененко Н.Н., Невмержицкий Н.В. Азот в земледелии Беларуси. –Мн.: «Хата», 1997. -196 с.
- 4. Деева В.П., Шелег Э.И., Санько Н.В. Избирательное действие хими-ческих регуляторов роста на растения. –Мн.: Наука и техника, 1988. -266 с.

Резюме

В исследованиях на дерново-подзолистых почвах установлено, что решающим фактором улучшения физиологических показателей (накопление органического вещества, формирование листовой поверхности и образование хлорофилла) растений яровых зерновых культур являются азотные удобрения, затем — фосфорно-калийные и стимуляторы роста при использовании их на высоком фоне минерального питания. Применение стимуляторов роста без минеральных удобрений было малоэффективным. Выявлена тесная корреляционная связь уровня урожайности зерна с физиологическими показателями растений яровых зерновых культур.

Ключевые слова: ячмень, овес, яровая пшеница, органическое вещество, хлорофилл, индекс листовой поверхности, удобрения, стимуляторы роста, урожайность.

УДК 632.938.1

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ ПРИ ВЫРАЩИВАНИИ КАРТОФЕЛЯ

В.Т. Михальчик, Д.А. Брукиш, А.Ф. Чурак, Е.Н. Дымар

УО «Гродненский государственный аграрный университет», г.Гродно, Республика Беларусь

Регуляторы роста и развития растений существенно влияют на морфогенез и репродуктивную способность растительного организма. Кроме того, они нередко являются фактором, индуцирующим изменение уровня устойчивости растения к биотическим и абиотическим стрессам. В качестве индукторов устойчивости (ИУ) могут выступать различные соединения: стероидные гликозиды (СГ), системные фунгициды (С Φ), фенольные соединения, антибиотики, продукты метаболизма возбудителей, микро- и макроэлементы.

На сегодняшний день накоплен значительный материал о роли био-логически активных веществ (БАВ) в фитоиммунитете. Они участвуют в механизмах пассивной защиты, предшествующих развитию инфекции, и в процессах активной защиты, возникающих в результате