УДК 37.046

НЕКОТОРЫЕ АСПЕКТЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ИННОВАЦИОННЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ

М.В. Воронов

Московский государственный психолого-педагогический университет (Россия, 127051, г. Москва, ул. Сретенка д. 29; e-mail: mivoro-nov@yandex.ru)

Аннотация. Исследуется проблема эффективности образовательных инноваций в современной высшей школе. Предлагается ряд мер по ее разрешению, базирующихся на активизации освоения и применения математического моделирования.

Ключевые слова: образовательное пространство, инновации, знания, модель, информационные технологии.

SOME ASPECTS OF INCREASING THE EFFECTIVENESS OF THE USE OF INNOVATIVE EDUCATIONAL TECHNOLOGIES M.V. Voronov

Moscow State Psychological and Pedagogical University (Russia, 127051, Moscow, Sretenka str., 29; e-mail: mivoronov@yandex.ru)

Summary. The problem of the effectiveness of educational innovations in modern higher education is investigated. A number of measures are proposed to resolve it, based on the activation of the development and application of mathematical modeling.

Key words: educational space, innovation, knowledge, model, information technology.

Осознание факта формирования базирующегося на знаниях общества приводит к необходимости управления процессами формирования все более эффективной образовательной среды. Однако даже при повсеместном внедрении новых образовательных технологий общий уровень подготовки выпускников в целом снижается.

На пути к разрешению этого противоречия предлагается, в том числе, ряд мер, в основу которых положена системность построения и освоения образовательных программ и более широкое использование математического моделирования.

В основу учебного плана положена упорядоченная последовательность подлежащих освоению учебных дисциплин. Каждая из них ориентирована на получение определенного компонента

образования будущего специалиста, и в сознании большинства обучающихся эти компоненты закрепляются, как отдельные слабо связанные компоненты. Сформировать у обучающихся в достаточной мере целостное представление о своей будущей трудовой деятельности только за счет согласования содержания и порядка изучения дисциплин не приносят должного результата.

Для достижения на этом пути больших успехов целесообразно создание практико-ориентированной образовательной среды, в рамках которой студенты получат целостное представление о своей будущей профессии в производственном, в социально-коммуникативном и в организационном аспектах. Эта идея высказывалась в ряде работ и ранее. В настоящее же время в связи с высоким уровнем развития информационных технологий и их потенциальной доступности появилась возможность переходить к разработке и реализации соответствующего проекта на практике.

Разработка математических моделей и их практическое применение при изучении учебных дисциплин позволяет не только глубже освоить учебный материал. На базе моделирования различных производственных ситуаций, при работе на тренажерах, и в процессе учебно-производственной факультативной практики, можно получать навыки практической деятельности, исполняя различные роли работника данной сферы деятельности. Для этого в учебный процесс должны шире внедряться меры, способствующие развитию у обучаемых способности решать задачи, используя информационные технологии и математическом моделировании.

Построение математической модели в значительной мере является искусством, успех которого зиждется и на высоком уровне интеллектуального развития субъекта в целом, и математической подготовки в частности. Вместе с тем в большинстве распорядительных документов в сфере образования «математическое моделирование», как дидактическая единица, отсутствует.

При весьма низком и продолжающим падать уровне мотивации учиться должным образом призывы активизировать дополнительную к учебной программе деятельность обычно не приносят успеха. Нужны новые механизмы, повышающие заинтересованность в обучении. Одним из них явилось введение семестровых работ по дисциплинам специальности, суть которых в следующем: синхронно с изучением данной дисциплины на протяжении всего семестра выполнять комплексное задание, требующее применение результатов освоения этой дисциплины. При этом крайне желательно, чтобы студенты приходили к необходимости проводить математические эксперименты

и решали вопросы построения соответствующих математически моделей. Практика введения семестровых работ, их последующее обсуждение на семинарских занятиях показывает весьма позитивные результаты.

Не подлежит сомнению тезис: результатом образования должно быть не только усвоение обучаемым определенного массива знаний, но и готовность к их практическому применению. Одним из действенных механизмов решения этой задачи представляется создание конструкторско-производственных студенческих факультативов (СКПФ). Их основная цель: в ходе освоения действующего учебного плана в рамках отводимого на самостоятельную работу времени практико-ориентированную образовательную среду создать данному направлению подготовки и организовать в ее рамках освоение широкого спектра функций предстоящей профессиональной деятельности.

В рамках СКПФ студенты формируют специфическую для будущей своей специальности рабочую среду, организуют и реализуют в ней свою деятельность, решая задачи некоторой конкретной организации. При этом каждый из них может увидеть внутреннюю «кухню» будущей работы и «повариться» в ней, попробовав себя на различных ролях, а также получить опыт работа в коллективе. Ситуация свободы выбора тематики исследования, условий, способов деятельности, партнеров по взаимодействию способствует повышению интереса и индивидуальной ответственности каждого и группы в целом за результат совместной деятельности, запуская тем самым механизмы самоорганизации.

Используя информационные технологии, создается практикоориентированная образовательная среда, в которой в условиях совместной работы студенты учебной группы (потока), сменяя друг друга, выполняют работы конструкторского и производственного характера. В процессе совместной деятельности они знакомятся с объектом и предметом труда, имеют возможность освоить многие компоненты своей будущей профессии. При этом формируются навыки взаимодействия между участниками проекта аналогичные тем, которые могут встретиться в их будущей деятельности.

Важно подчеркнуть, что все эти мероприятия реализуются на базе современных информационных технологий, успех создания и применения которых самими студентами базируется на осознанном применении математического моделирования.