свиней, которые можно использовать в селекции изученной популяции.

ЛИТЕРАТУРА

- 1. Дж.Ф., Лэсли. Генетические основы селекции сельскохозяйственных животных/ Дж. Ф., Лэсли М. "Колос" 1982. 391 с.
- 2. Дмитриев, В.Б. Соответствие критериев оценки племенных качеств животных, методов их отбора и подбора качественному прогрессу популяции/ В.Б., Дмитриев С. Петербург. // Тезисы YI Съезд генетиков и селекционеров России. С. 35-36.
- 3. Соловьев, И.В. Совершенствование асканийского типа украинской мясной породы свиней/ И.В. , Соловьев // «Зоотехния» 2000. № 10. С. 6 -7.
- 4. Бажов, Г.М., Бахирева, Л.А. Прогнозирование продуктивных качеств свиней в раннем возрасте./ Г.М., Бажов, Л.А., Бахирева Краснодар, 1994. 143 с.
- 5. Шацкий, М.А. Прогнозирование воспроизводительных качеств хряков белорусской мясной породы./ М.А., Шацкий // Ученые записки ВГАВМ: Том 37. Ч. 1. Витебск, 2001.-C.80-83.

УДК 634.4.082.45352:631223.6:628.8/9

ВЛИЯНИЕ ГЕНЕТИКО-СРЕДОВЫХ ФАКТОРОВ И ИХ ВЗАИМОДЕЙСТВИЕ НА СПЕРМОПРОДУКЦИЮ ХРЯКОВ-ПРОИЗВОДИТЕЛЕЙ

А.Д. Шацкий, Е.В. Руденко, В.М. Борисов

УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь, 230008

Аннотация. В результате исследований по результатам оценки 2007 эякулятов от хряков-производителей 6 пород в трех свиноводческих комплексах Гродненксой и Брестской области Республики Беларусь установлено, что оцениваемые параметры спермопродукции на 81,69% детерминируются комплексом, 17,39% генетической принадлежностью хряков. Объем эякулята на 49,70% определяется взаимодействием комплекс х порода, концентрация спермы — на 81,50%, подвижность - 50,90%.

Summary. The results of an assessment of 2007 ejaculates from boarsmanufacturers of 6 breeds in three pig-breeding complexes in Grodno and Brest region of Republic of Belarus were shown. It was established that estimation arguments of semenproduction on 81,69 % has been determined by the complex. 17,39% has been determined by genetic accessory of boars. The ejaculate volume on 49,70% was determined by interacting complex x breed, concentration of a semen — on 81,50%, movability — on 50,90%.

Введение. Изучение генетико-средовых взаимодействий является одной из важных проблем в современной теории и практике разведения сельскохозяйственных животных [1, 2, 3, 4]. Это положение всецело относиться и к изучению спермопродукции хряков-производителей

в свиноводческих комплексах. Количественные и качественные параметры спермопродукции детерминируются генетическими факторами, а их экспрессия зависит от условий среды. Поэтому племенная ценность животных является результатом взаимодействия генотип х среда. Как известно, среда является многомерным понятием, содержащим в своей основе как климатические, географические, кормовые, так и в широком понимании разнообразные элементы технологии производства, методы селекции и воспроизводства. В различных природноклиматических зонах и провинциях проявление природной цикличности имеет свои особенности, которые необходимо изучать и учитывать в селекционной и хозяйственной деятельности.

Синхронизация генотипа и качества среды позволяет в полной мере использовать генетическую предрасположенность данной особи к определенному экономическому эффекту. Значение этой проблемы заключается и в том, что 41% доходов Республики Беларусь находится под влиянием климатического состояния территории. В известных источниках литературы обсуждение этой проблемы имеет в основном предположительный характер и не основывается на твердых и научно обоснованных фактах, включающие экспериментальные данные или теоретические обоснования изучения влияния взаимодействия генетических и паратипических факторов на спермопродукцию хряков не имеется.

Цель работы. Выяснить модифицирующее влияние условий, сложившихся в свиноводческих комплексах, расположенных в различных климатических зонах, на структуру формирования параметров спермопродукции хряков-производителей различной породной принадлежности и влияния взаимодействия с этими факторами. Каждый отдельный свиноводческий комплекс выступает как отдельная среда, в зоне действия которого образовалась новая и стабильная экосистема производства, отличающаяся от других комплексов.

Материалы и методика исследований. Исследования проведены по результатам оценки 2007 эякулятам, полученных от хряковпроизводителей 6 пород, используемых в 3-х свиноводческих комплексах Брестской и Гродненской областях, по таким породам, как крупная белая (КБ), эстонская беконная (ЭБ), белорусская мясная (БМ), дюрок (Д), ландрас (Л) и белорусская черно-пестрая порода (БЧП). Оценка количественных и качественных параметров спермы производилась по следующим показателям: объему эякулята (см3), концентрации спермиев (х106/см3), подвижности спермиев (баллы), общему количеству спермиев в эякуляте (х109) и количеству подвижных спермиев в эякуляте (х109), в соответствии с требованиями нормативных материалов

[5]. В модель статистической обработки результатов исследований включены факторы, поддающиеся классификации и рассматриваемые как непрерывные переменные, учтенные посредством соответствующих статистических параметров и подчиняющиеся нормальному распределению. Изучение показателей спермопродукции проводилось в свиноводческих комплексах «Беловежский», расположенного в Южной зоне «Западного округа» Брестской области, комплексе «Пограничный» Берестовицкого района, размещенного в Центральной зоне «Западного округа» и комплексе «Василишки», который расположен северо-западнее Центральной зоны «Западного округа» [6]. Различия по среднесуточной температуре между свиноводческими комплексами «Беловежский» и СГЦ «Василишки» составляет 2-3 °C. Основой для статистического анализа послужили результаты оценки спермопродукции хряков в различных свиноводческих комплексах. Факторный анализ компонентов общей вариансы, по изучению спермопродукции, проведен с использованием компьютерных программ LSMLMW, по смешанной модели 1 (Mixed Model Least-Squares and maximum Likelihood) и UNIANOVA SPSS 12 [7, 8]. В статистическом анализе использован метод наименьших квадратов, в соответствии с которым результаты вычислений определяются из условия минимума суммы квадратов отклонений от теоретических значений. Статистическая модель математической обработки данных наблюдений имеет следующий вил:

 $\label{eq:yijklmno} \mbox{ yijklmno} = \mbox{μ+ Ai+Bj+Ck + Dl+ Em+ Kn + Lo + (AB x C)ijk + \dots$} \\ \mbox{(AB x Lo) ijo + eijklmno} \; ,$

где Y ijklmno – вектор изучаемых признаков в Ai комплексе по Bj породе, Ck – объему эякулята, Dl-концентрации спермы, Em – подвижности спермиев, Kn – общему количеству спермиев в эякуляте, Lo – количество подвижных спермиев в эякуляте, µ— среднее значение наименьших квадратов изучаемых признаков (LSM SE); Ai – фиксированный эффект комплекса (1-3); Bj –фиксированный эффект породы (1-6); Ck – объем эякулята, см3, Dl – концентрация спермиев, х106/ст3.; Em – подвижность спермиев, балл; Kn – общее количество спермиев в эякуляте, х109; Lo- количество подвижных спермиев в эякуляте; х109; (AB x C)ijk –кумулятивный эффект взаимодействие комплекс х порода х объем эякулята; (AB x Lo)рijo – кумулятивный эффект взаимодействие комплекс х порода х количество подвижных спермиев в эякуляте; еijklmno— случайная ошибка вектора Уijklmno, возникшая в результате влияния неучтенных факторов макро- и микро-среды и генетического эффекта животного.

Достоверность различий между комплексами и породами определяли с помощью инвариантного F-теста, основанного на первичных независимых парных сравнениях среди анализируемых средних значений признаков.

Результаты исследований и их обсуждение. Из данных таблицы 1 видно, что на величину изучаемых показателей спермы хряков существенное влияние оказали условия свиноводческих комплексов. Исследования спермопродукции хряков-производителей свидетельствует о различиях количественного и качественного состава между свиноводческими комплексами.

Таблица 1 – Показатели параметров спермопродукции хряковпроизводителей по свиноводческим комплексам.

Показатели	Обозна	Свиноводческие комплексы					
спермопродук ции	чения	«Беловежский»	«Василишки»	«Погранич- ный»	В среднем		
Объем эякулята, см ³	LSM SE ДИ	330,56 4,72 321,31 – 339,81	313,83 2,22 309,48-318,17	266,12 5,43 255,45-276,78	303,50 2,51		
Концентрация, x10 ⁶ /cm3	LSM SE ДИ	166,91 3,28 160,46-173,35	226,93 1,54 223,91-229,96	344,92 3,78 337,50-352,35	246,26 1,75		
Подвижность, балл	LSM SE ДИ	7,285 0,27 7,232-7,338	7,779 0,13 7,754-7,804	7,992 0,31 7,931-8,052	7,685 0,014		
Кол-во спер- миев в эякуля- те, х10 ⁹	LSM SE ДИ	53,561 0,844 51,906-55,216	67,679 0,396 66,902-68,457	82,379 0,973 80,471-84,287	67,878 0,45		
Кол-во подвижных спермиев в эякуляте, х109	LSM SE ДИ	39,066 0,805 37,488-40,644	52,95 0,378 52,209-53,691	65,562 0,92 63,743-67,382	52,52 0,42		

ДИ – 95% доверительный интервал

Так, наибольший объем эякулята установлен у хряков в свиноводческом комплексе «Беловежский», наименьший – в комплексе «Пограничный». По концентрации спермиев в эякуляте наблюдается обратная зависимость: наибольшая концентрация спермиев установлена в комплексе «Пограничный», наименьшая – «Беловежский». Сходная зависимость установлена в отношении подвижности спермиев и общего количества спермиев в эякуляте. Спермопродукция хряков в СГЦ «Василишки» по количественным и качественным параметрам занимает промежуточное положение среди изучаемых комплексов. Сперма хряков, содержащихся на комплексе «Пограничный», по концентрации, подвижности и общему количеству спермиев в эякуляте превос-

ходила аналогичную продукцию, полученную от хряков свиноводческого комплекса «Беловежский» и СГЦ «Василишки». Различия в параметрах спермопродукции хряков-производителей в различных свиноводческих комплексах методом инвариационного F теста показало на существенные различия при уровне вероятности P<0.001.

Таблица 2 – Показатели спермопродукции у хряков-производителей различных геотипов в свиноводческих комплексах (LSM - SE).

	Показатели спермопродукции							
Порода	Объем эякулята, хсм ³	Концентрация спермы, х10 ⁶ / см ³	Подвижность, балл	Кол-во спер- миев в эякуля- те, х109	Подвижных спермиев в эякуляте, х109			
	«Беловежский»							
КБ	333,40±8,13	160,58±5,72	7,224±0,051	53,5±1,57	38,68±1,53			
ЭБ	371,52±8,29	158,38±5,82	7,311±0,052	58,84±1,6	40,64±1,61			
БМ	335,79±8,55	166,40±6,02	7,274±0,054	55,88±1,65	40,64±1,61			
Л	355,24±11,58	163,07±8,15	7,379±0,073	57,93±2,24	42,75±2,17			
Д	177,85±13,06	210,49±9,18	7,284±0,082	37,44±2,53	27,27±2,45			
	«Василишки»							
КБ	333,98±4,09	214,19±2,87	7,757±0,026	71,54±0,79	55,49±0,77			
ЭБ	330,17±3,50	217,11±2,46	7,678±0,022	71,68±0,67	55,04±0,66			
Л	312,76±4,55	226,27±3,20	7,779±0,029	70,76±0,88	55,05±0,85			
Д	201,25±7,09	307,95±4,98	7,991±0,045	61,98±1,37	49,52±1,33			
БЧП	308,61±4,59	226,59±3,23	7,891±0,o29	69,93±0,89	55,18±0,86			
«Пограничный»								
КБ	305,75±5,83	330,45±7,61	7,792±0,068	100,94±2,11	78,65±2,03			
ЭБ	276,04±7,75	332,64±2,34	8,042±0,067	91,82±2,10	73,84±2,12			
Л	285,44±4,31	354,12±3,81	8,104±0,060	101,08±2,28	81,92±1.73			
Д	189,23±7,,22	419,38±4,39	7,977±0,061	79,36±1,19	63,32±1,77			
БЧП	274,15±6,35	288,04±2,45	8,042±0,076	76,12±2,11	63,50±2,01			

Использование инвариационного теста F для анализа вариабильности показателей спермопродукции показал, что различия по качеству спермы являются достоверными (3). Так, по объему эякулята хряки крупной белой породы в свиноводческом комплексе «Беловежский» не отличаются от хряков в комплексе СГЦ «Василишки» и превосходят по этому показателю хряков в комплексе «Пограничный». Сходная тенденция сохраняется и в отношении таких пород, как эстонская беконная и ландрас. Объем эякулята у хряков породы дюрок был наименьшим в СК «Беловежский» по сравнению СК «Пограничный» и СГЦ «Василишки». Хряки белорусской черно- пестрой породы в СГЦ

«Василишки» превосходили по объему эякулята хряков в СК «Пограничный». Различия в межпородной изменчивости среди комплексов по концентрации спермы и ее подвижности в комплексе «Беловежский» был менее существенным. Анализ показателей спермопродукции хряков различной породной принадлежности в изучаемых свиноводческих комплексах представлен в таблице 3 и 4. Так, по объему эякулята хряки крупной белой породы свинокомплекса «Беловежский» не отличались от животных СГЦ «Василишки», но превосходили хряков, содержащихся в свинокомплексе «Пограничный». Сходная тенденция проявилась и по хрякам породы эстонская беконная и ландрас. В то же время объем эякулята у хряков породы дюрок оказался самым минимальным. Животные белорусской черно-пестрой породы, содержащихся в СГЦ «Василишки», превосходили по объему эякулята хряков «Пограничный».

Обращает на себя внимание тот факт, что межпородные различия по изменчивости таких показателей как концентрация и подвижность спермиев являются существенными. В итоге, различия в таких производных, как общее количество спермиев в эякуляте и количество подвижных спермиев в эякуляте, также оказались существенными между породами.

Установленные параметры спермопродукции хряков в изучаемых комплексах соответствуют данным как отечественных, так и зарубежных исследователей [9, 10, 11].

Анализ компонентов общей вариансы демонстрирует существенное влияние взаимодействия изучаемых факторов на основные параметры спермопродукции хряков-производителей. Установлено, что относительное влияние комплекса на изучаемые параметры спермопродукции составляет 81,69%, породы — 17,39%, других неучтенных факторов — 0,39%. Различия в оценке объема эякулята детерминируются, в изучаемой модели, по данным коэффициентов детерминации на 49,70%, концентрация спермы — 81,50%, подвижность спермиев — 50,90% и количество доз спермы, полученных из одного эякулята, — 65,70% (таблица 3).

Таблица 3 — Анализ компонентов общей вариансы по свиноводческим комплексам и породам и их взаимодействие на параметры спермопродукции хряков-производителей.

	Комплекс	Порода	Взаимодействие		
Обозначения	A	В	AB		
	Объем эякулята, см ³				
1	2	3	4		
df	2	5	14		
MS	308468,41	378304,77	258848,977		

Продолжение таблицы 3							
1	2	3	4				
e	7096,969	6471,064	5629,473				
F	43,465***	58,461***	45,981***				
	Концентра	ция спермиев в эякул:	яте,х 10 ⁶ / см ³				
MS	2224449,681	330577,26	414176,258				
e	3443,360	4844,131	2786,279				
F	646,01***	68,243***	148,649***				
	Пс	Подвижность спермиев, балл					
MS	41,534	7,495	7,136				
e	0,230	0,253	0,223				
F	180,475***	29,602***	31,989***				
	Общее кол	Общее количество спермиев в эякуляте, х 10 ⁹					
MS	57485,007	4214,209	10588,778				
e	227,166	274,579	211,824				
F	253,053***	15,348***	49,989***				
	Количество подвижных спермиев в эякуляте, х 10 ⁹						
MS	49345,559	3797,424	8396,424				
e	206,49	246,723	198,263				
F	238,973***	15,391***	42,36***				

Таким образом, различия в параметрах спермопродукции могут быть вызваны экспрессией различных групп генов, основной причиной которой является наблюдаемое генетико-средовое взаимодействие. В зависимости от региона разведения и использования хряков могут иметь преимущества и другие группы генов.

Представленные результаты позволяют выявить общие закономерности в изменчивости спермопродукции хряков в результате прямого влияния изучаемых факторов и их взаимодействия и не позволяют выявить частного влияния этих факторов в общей изменчивости спермопродукции. С этой целью проведен дополнительный факторный анализ для определения относительного их влияния в общей изменчивости. Результаты этих вычислений представлены в таблице 4.

Таблица 4 – Относительное факторное влияние комплекса и породы на параметры спермопродукции хряков-производителей

Признаки	Комплекс	Порода	Другие факторы	Корреля- ция,RS	R ²
1	2	3	4	5	6
Объем эякулята, см ³	59,96***	38,61***	1,43	0,247***	0,497***
Концентрация спермы, х 10 ⁶ /см ³	92,32***	7,51***	0,17	0,664***	0,815***
Подвижность, балл	92,79***	6.04***	1,17	0,259***	0,509***
Количество спермиев в эякуляте, х10 ⁹	95,05***	4,49***	0.46	0,412***	0.642***
Количество подвижных спермиев в эякуляте, x109	96,87***	2,71*	0,42	0.434***	0,659***

	Пр	одолжение	таблицы 4		
1	2	3	4	5	6
Количество доз из одного эякулята, шт	97.52***	2.022*	0,73	0,426***	0.664***
В среднем	87,398	11,872	0,73	-	-

Анализ раздельного влияния комплекса и породной принадлежности хряков на отдельные показатели спермопродукции характеризуется значительным разнообразием. Так, относительное влияние комплекса на объем эякулята оставляет 59,96%, породы — 38,61%, концентрацию спермиев соответственно — 92,32% и 7,51%, подвижность спермиев — 92,79% и 6,035%.

Заключение. Таким образом, установлено, что фенотипическое выражение оцениваемых параметров спермопродукции хряков-производителей является эффектом взаимодействия генетических факторов и факторов внешней среды. Ведущим фактором в формировании количественных и качественных параметров спермопродукции является свиноводческий комплекс, который определяет уровень проявления признаков в зависимости от породной принадлежности хряков.

ЛИТЕРАТУРА

- 1. Fisher RA., W.A. Mackenzie. Studies in crops variation 11.The manurial response of different potato varieties. / RA. Fisher W.A. Mackenzie. Jour. of Agric. Scie., vol 13, 1923. p 311-320
- 2. Игнатьев, М.В. Количественный анализ действия наследственности и среды./ М.В. Игнатьев.// Биологический журнал ,т. 17, выпуск 4-5 1933 С. 123-129.
- 3. Стакан, Г.А. Значение взаимодействия генотипа со средой в племенной работе животными. / Г.А. Стакан Генетические основы селекции животных. Издательство Наука. 1969. С. 212-222.
- 4. Hoste S. Genotype environment interactions. Perspective in pig science./ S. Hoste Nottingham Univer. Press. 2003, p. 25-39.
- 5. Инструкция по искусственному осеменению свиней. 1998. Минск, 98 С.
- 6. Приказ Госкомитета по земельным ресурсам, геодезии и картографии Республики Беларусь № 1 от 5.01.1998 г. Минск.
- 7. UNIANOVA 1998 SPSS 10.1 Statistical Product and Service Solution Base version 8.0 for Windows User s guide by SPSS Inc. USA.
- 8. Harvey W.R. LSML 1998. Mixed Model Least-Sguares and Maximum Likelihood Computer Program HC-2, Copyrigh 1998.
- 9. Szostak B. Inseminacja świń i charakterystyka cech nasienia knurów użytkowanych w SHIUZ Bydgoszczy. / B. Szostak Oddział terenowy w Zamościu, Przegląd hodowlany –2001 . No 3, 17 S.
- 10. Orlicki S. .Wyniki produkcyjne knurów w Stacji eksploatacji knurów w Kleczy Dolne. / S. Orlicki, W. Migdal, R. Tuz. //Przeglad hodowlany. 2003 № 12, 17 S..
- 11. Pokrywka K., M. Ruda, A. Augustynska-Prejsnar. Ksztaltowanie się wybranych cech ejakulatów knurów ras matecznych w zależnosci od pory roku i odstępu mędzy pobieraniem nasienia. / K. Pokrywka, M. Ruda, A. Augustynska-Prejsnar // Przegląd hodowlany. 2001 − № 8, S.13.